GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
118 views
$\int_{0}^{\frac{\pi}{4}}( \sec 2x -\tan 2x )\ dx$
asked in Calculus by Active (2.3k points)  
edited by | 118 views
log2.
-----
please explain with steps.
Ans given as (1/2) ln 2

1 Answer

+2 votes
Best answer
$\int$sec2x = 1/2 * ln|sec2x + tan2x|

$\int$tan2x = -1/2 * ln|cos2x|

$\int_{0}^{\prod/4}$(sec2x - tan2x) = $\int_{0}^{\prod/4}$(1/2ln|sec2x + tan2x|+1/2ln|cos2x|) = $\int_{0}^{\prod/4}$(1/2ln|1+sin2x|) = 1/2ln2
answered by Boss (8.1k points)  
edited by
please check it if there is any mistake
answer given as (1/2) ln 2
∫sec2x = 1/2 * log|sec2x + tan2x|

∫tan2x = - 1/2 * log|cos2x|

these are correct
@pavan is correct . @gate u did make a mistake :)  it willbe 2 ln 2
thanks :)
yeah corrected!! thanks


Top Users Aug 2017
  1. Bikram

    5388 Points

  2. ABKUNDAN

    4730 Points

  3. manu00x

    3582 Points

  4. akash.dinkar12

    3534 Points

  5. rahul sharma 5

    3196 Points

  6. makhdoom ghaya

    2710 Points

  7. just_bhavana

    2432 Points

  8. stblue

    2244 Points

  9. Tesla!

    2126 Points

  10. pawan kumarln

    1914 Points


25,076 questions
32,240 answers
75,170 comments
30,249 users