GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
70 views

find the solution of the recurence relation

a=3an-1 + 2n  initial conditon is given as a1=3 ?

asked in Mathematical Logic by Active (1.3k points)   | 70 views

2 Answers

+3 votes
Best answer

Your question is of the form non linear homogeneous solution with constant coefficient. 

so 

$a_{n}=a^{\left(h\right)}_{n}+a^{\left(p\right)}_{n}$

where ,$\text{h=Homogeneous  and p= polynomial}$

 

$\text{solve  }   \rightarrow a^{\left(h\right)}_{n}$

characteristics equation will be 

$r=3 \Rightarrow root=3$

so,$a^{\left(h\right)}_{n}=\alpha *3^{n}$

now solve $ P_{n}=a^{\left(p\right)}_{n}$

Let $Q_{n}  \: \text{be our trial equation },Q_{n}=cn+d$

Then our equation 

$a_{n}=3*a_{n-1}+2  \: \text{becomes} \left ( c*n+d \right )=3*\left ( c*\left ( n-1 \right )*d \right )$

$\Rightarrow 2cn+2n+2d-3c=0$

$\Rightarrow n \left (2c+2\right )+2d-3c=0$

solving/comparing both sides,

$c=-1,d= - \frac {3}{2}$

 

Now assemble all things you obtained.

$a_{n}=a^{\left(h\right)}_{n}+a^{\left(p\right)}_{n}$

$a_{n}=\alpha *3^{n}+\left ( cn+d \right )$

$a_{n}=\alpha *3^{n}-n-\frac{3}{2}$

put value of $a_{1}=3,3=\alpha *3^{1}-1-\frac{3}{2},\alpha =\frac{11}{6}$

$a_{n}=\frac{11}{6} *3^{n}-n-\frac{3}{2} \text{is your answer}$

answered by Boss (8.4k points)  
selected by
why u take particular solution as : cn+d

for poylnomials of first degree take 

n=Cn+d

n^2=Cn^2+bn+a.

2^n=A.2^n.

+4 votes

It is non homogeneous solution.so first find homogenous and find particular solution..

$a_{n}-3a_{n-1}$=2n.---------------------(i)

Case I) finding homogeneous part.

i.e)$a_{n}-3a_{n-1}$=0.

t-3=0

t=3.(it is root)

Solution is $a_{n}$=p.$3^{n}$.

Case II) finding non homogeneous part.

Non homogenneous part is polynomial so $a_{n}$=An+b.$-----------(ii) sub this equation in (i)

Then(An+c)-3(A(n-1)+c)=2n

n(-2A)+3A-2c=2n.

compare both sides then A=-1 and c=-3/2.

particular solution is=Homogeneous +non homogeneous .

$a_{n}=p.3^{n}-n-3/2.$.

Given that a1=3.

then 3=3p-1-3/2.

p=11/6.

substitute in above equation $a_{n}=[11/6].3^{n}-n-3/2.$

answered by Veteran (10.8k points)  


Top Users May 2017
  1. akash.dinkar12

    3146 Points

  2. pawan kumarln

    1608 Points

  3. sh!va

    1580 Points

  4. Arjun

    1326 Points

  5. Devshree Dubey

    1230 Points

  6. Angkit

    1028 Points

  7. Debashish Deka

    1012 Points

  8. Bikram

    970 Points

  9. LeenSharma

    810 Points

  10. srestha

    662 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. pawan kumarln

    234 Points

  2. Ahwan

    118 Points

  3. jjayantamahata

    106 Points

  4. joshi_nitish

    106 Points

  5. Aditya GN

    63 Points


22,722 questions
29,048 answers
65,039 comments
27,510 users