GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
102 views
$\begin{align*} &S = \left \{ G_i \;\; | \; G_i \in \text{ lebeled trees with 4 vertices} \right \} \\ &\text{Relation } \quad R = \left \{ {\color{red}{\left ( G_i,G_j \right )}} \; | G_i,G_j \in S \;\; \text{and} \;\; G_i,G_j \;\; \text{are} \;\; \text{isomorphic to each other} \right \} \end{align*}$

No of equivalent classes of $R$ ?
asked in Combinatory by Veteran (41.3k points)   | 102 views
How come you are comparing trees? For isomorphism, the labels must also be same, right?
Sir is isomorphism is checked only in terms of their structure? Shouldn't it be checked for adjacent colors also?
@debashish,i thought the answer is only 1 as we can get tree with nonly 3 edges
so,you are saying that first 12 are in one class of isomorphism,

whya bove 12 not isomorphic to bottom 4??

is it because there degrees are different..right??
Yes first see no. Of vertices and edges, then check for degree sequence then check for same cycle length. 2 equivalence classes. Btw good question.

Please log in or register to answer this question.

Top Users Feb 2017
  1. Arjun

    5490 Points

  2. Bikram

    4266 Points

  3. Habibkhan

    3972 Points

  4. Aboveallplayer

    3126 Points

  5. Debashish Deka

    2646 Points

  6. sriv_shubham

    2328 Points

  7. Smriti012

    2270 Points

  8. Arnabi

    2114 Points

  9. sh!va

    1780 Points

  10. mcjoshi

    1702 Points

Monthly Topper: Rs. 500 gift card

20,902 questions
26,048 answers
59,771 comments
22,184 users