GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
179 views


The number of BST's possible with $6$ nodes numbered $1$,$2$,$3$,$4$,$5$ and $6$ with exactly one leaf node are .......................

OR

The number of BST's possible with $6$ nodes numbered $1$,$2$,$3$,$4$,$5$ and $6$ having a height of $5$ are ....................

asked in Programming by Active (1.2k points)  
edited by | 179 views
Should be 2 ?
@pC,no it is 32 check my solution!
Second interpretation of the question is totally giving it away, so should be removed. The original question is a good exercise.
Exactly !

2 Answers

+8 votes
Best answer

The ans is 25=32

Here the elements are  1,2,3,4,5,6 and we need only 1 leaf 

1.So let us fix a root node: To fix the root node we have 2 choice either 1 or 6 from  1,2,3,4,5,6

(if we select any non-extreme elements then only 1 leaf is not possible)

Let us say we select 1 as root node 

2.In each and every level we have 2 different option that is to select i,e; either of extreme elements

So in 2nd level we can select 2,3,4,5,6

Let us say we select 6 in 2nd level 

3.We still have 2 option to select in 2,3,4,5

So this is true in all levels except last level since only 1 element is left.

Therefore, total possibilities are : 2 * 2 * 2 * 2 = 24

The same condition is true for 6 as a root

Hence, 24* 2 (1 as root or 6 as root)  =  25

answered by Veteran (10.5k points)  
edited by
its 32 not $2^{32}$ and same for $2^{16}$
Intuitively I was following the same method, if you look at my trees. Thanks for proving. +1
@pratyush, yes your method is absolutley correct but what i wanted to say is no need to write all those 32 trees to get the ans just understanding the pattern is enough.

@kapil,it was a typing mistake,Thnx
@Prajwal: I totally agree.
+3 votes

I'm getting 32. But I followed brute force method. 16 rooted on node 1 and 16 rooted on node 6.

answered by Loyal (3.1k points)  
edited by
here 1st and last node are set.

remaining 4 nodes can arrange in 4! ways.

Now, 1st and last node 1 and 6 can be arrange in 2! ways

So, total number of ways 2! X 4!

isnot it?
@srestha: that way you'll get few BSTs which have more than one leaf node. We need exactly one leaf node. I suggest you try drawing few BSTs. Start with root as node 1 and form the right skewed tree 1-2-3-4-5-6 and modify from there.

My answer can be wrong though as I have used brute force and I might miss few BSTs, but my intuition says number of BSTs rooted at 1 should be equal to number of BSTs rooted at 6
The ans 32 is correct but instead of brute force method we can try counting method,check my solution!

Related questions

0 votes
0 answers
1
asked in DS by Vishal Goyal Junior (713 points)   | 35 views
0 votes
0 answers
2
asked in DS by Vishal Goyal Junior (713 points)   | 32 views
Top Users Jan 2017
  1. Debashish Deka

    9716 Points

  2. sudsho

    5560 Points

  3. Bikram

    5290 Points

  4. Habibkhan

    4920 Points

  5. Vijay Thakur

    4498 Points

  6. Arjun

    4418 Points

  7. saurabh rai

    4236 Points

  8. Sushant Gokhale

    4230 Points

  9. Kapil

    3848 Points

  10. santhoshdevulapally

    3808 Points

Monthly Topper: Rs. 500 gift card

19,449 questions
24,228 answers
53,959 comments
20,373 users