GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
61 views

According to my understanding, there should be men and women both in the team. So we can do:
3M and 1W or
2M and 2W or
1M and 3W.

So it will be: C(5,3)*C(5,1)+C(5,2)*C(5,2)+C(5,1)*C(5,3).

But the answer given is 600. How is it possible?

asked in Probability by Loyal (3.6k points)   | 61 views

2 Answers

+1 vote
Best answer
A mixed pair in a tennis match consists of 1 man and 1 woman. To form the team you have to select 4 pairs of 1 man and 1 woman.So there'll always be 4 men and 4 women in team. Hence your approach is incorrect.

So suppose you have 5 men: M1, M2, M3, M4, M5 and 5 women: W1, W2, W3, W4, W5

Now, for first pair if you select a man, you have 5 options for women to form a team.

For second pair, if you select a man, you have 4 options for women (one women already formed the team, so she can't be included in any other team)

Similarly, for 3rd pair, you have 3 options and 4th pair you have 2 options.

Now from 5 men, you have to select 4 [e.g.you can select M1, M2, M3, M4 or M2, M3, M4, M5 or ... ] i.e., $5 \choose 4$

So total possible number of selections:  $5 \choose 4$ * 5 * 4 * 3 * 2 = 5 * 120 = 600
answered by Loyal (3.3k points)  
selected by
+1 vote

Here, they are asking In how many ways the pairing can be done?

First, select 4 men and 4 women. Thaat can be done $\binom{5}{4}$ * $\binom{5}{4}$

Now, once selected, they can be arranged in 4! ways (i.e. onto functions from 4 men to 4 women)

So, asnwer = $\binom{5}{4}$ * $\binom{5}{4}$ * 4! ways

                 = 600 ways

answered by Veteran (14.8k points)  


Top Users Mar 2017
  1. rude

    5236 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2732 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1402 Points

  9. Bikram

    1384 Points

  10. Sanjay Sharma

    1128 Points

Monthly Topper: Rs. 500 gift card

21,545 questions
26,881 answers
61,232 comments
23,243 users