GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
301 views

Consider the binary relation:

$S= \left\{\left(x, y\right) \mid y=x+1 \text{ and } x, y \in \left\{0, 1, 2\right\} \right\}$

The reflexive transitive closure is $S$ is

  1. $\left\{\left(x, y\right) \mid y >x \text{ and } x, y \in \left\{0, 1, 2\right\} \right\}$ 

  2. $\left\{\left(x, y\right) \mid y \geq x \text{ and } x, y \in \left\{0, 1, 2\right\} \right\}$ 

  3. $\left\{\left(x, y\right) \mid y < x \text{ and } x, y \in \left\{0, 1, 2\right\} \right\}$ 

  4. $\left\{\left(x, y\right) \mid y \leq x \text{ and } x, y \in \left\{0, 1, 2\right\} \right\}$

asked in Set Theory & Algebra by Veteran (58.2k points)   | 301 views
@Habibkhan, can u explain this problem in detail. Thanks in advance.
Reflexive closure is taken to add the reflexive property and same for transitive as well..

Now for reflexivity we should have (x,x) ordered pair..which is not possible if y = x + 1..So the modification required is y = x need also be added..

For transitive property we require here if y >= x and z >= y implies z >= x as original condition is not transitive clearly bcoz if y = x + 1 and z = y + 1 this does not imply z = x + 1 as z = x + 2..So we need to redefine it as y > x instead of y = x + 1 and for reflexitvity y = x is also to be mentioned..

So y >= x is the appropriate closure..Hence B) option is correct.
What is asked to do in question..??
simple, just take the reflexive closure by adding the diagonal elements and then take the transitive closure and verify with the options.

S={(0,1),(1,2)}

reflexive closure of S={(0,0), (1,1), (2,2,) ,(0,1),(1,2)}

Now take transitive closure={(0,0), (1,1), (2,2,) ,(0,1),(1,2),(0,2)}

clearly x<=y.

2 Answers

+8 votes
Best answer
Option b. Transitive means, x is related to all greater y (as every x is related to x + 1) and reflexive means x is related to x.
answered by Loyal (2.9k points)  
selected by

Reflexive closure is easy, x should relate to itself, therefore along with y=x+1, we should put y=x also.
Option B and D left.

For transitive closure, u see in original relation O is related to 1, 1 is related to 2, 2 is related to 3, ..and so on.
Now in transitive closure, O should relate to 2, and the moment i add (O, 2), i also have to add (O,3) because 2 is already related to 3.
basically i have to add all pairs which are greater than O. and that applies to all numbers. To make transitive closure, i have to add rule $y>x$

Now it boils down to 3 rules in total
y=x+1 (given)
y=x (reflexive closure)
y>x (transitive closure)

3rd condition already includes 1st one, therefore first cond is redundant.

 

 $\left.\begin{aligned}
  y>x\\
  y=x
\end{aligned}\right\} \implies y\geqslant    x$

+3 votes

Relation contains = { (0,1) , (1,2) }

When said Reflexive Transitive then apply first Transitive closure and then Reflexive closure.

After Transitive = { (0,1) (1,2) (0,2) }

After Reflexive ={ (0,1) (1,2) (0,2) (0,0) (1,1) (2,2) }

So B is ans.

Some Important Note: Wiki

The transitive closure of a binary relation R on a set X is the smallest relation on X that contains R and is transitive.

For example, if X is a set of airports and x R y means "there is a direct flight from airport x to airport y" (for x and y in X), then the transitive closure of R on X is the relation R+such that x R+ y means "it is possible to fly from x to y in one or more flights". Informally, the transitive closure gives you the set of all places you can get to from any starting place.

More formally, the transitive closure of a binary relation R on a set X is the transitive relation R+ on set X such that R+ contains R and R+ is minimal . If the binary relation itself is transitive, then the transitive closure is that same binary relation; otherwise, the transitive closure is a different relation.

answered by Veteran (22.3k points)  
edited by
@Gabbar  Best one :)

Thank u for explaing
good
Top Users Feb 2017
  1. Arjun

    5396 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2240 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,023 answers
59,698 comments
22,136 users