GATE CSE
First time here? Checkout the FAQ!
x
0 votes
61 views

asked in Calculus by Boss (8.7k points)   | 61 views
is it option A?
Yes but how?

1 Answer

0 votes

I think this should be the logic.

Let f(x) = $\frac{\cos ^{m}x}{x^{n}}$

Value of x Value of n
<1 <1
<1 >=1
>=1 <1
>=1 >=1

 

Now, we focus for first 2 cases (i.e. x<1 since x has more values less than 1  rather than greter than 1)

 

Now, if we consider n>=1, then consider what will be instantaneous value of f(x).

e.g n=100 and x=0.02

$\therefore$ cosmx<1 but xn$\rightarrow$0

So, instantaneous value is very high and thus, integration of f(x) will never converge.

 

Now, if we consider n<1, then consider what will be instantaneous value of f(x).

e.g  n=0.9  x=0.02

$\therefore$  instantaneous value of f(x) will be finite. (just try taking an example)

So, this will converge.

 

So, my answer was just a calculated guess. I dont know if there is any solution by using the series expansion of cos(x).

 

 

answered by Veteran (15.2k points)  


Top Users Jul 2017
  1. Bikram

    3946 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1842 Points

  4. joshi_nitish

    1650 Points

  5. Arjun

    1268 Points

  6. Hemant Parihar

    1184 Points

  7. Arnab Bhadra

    1100 Points

  8. Shubhanshu

    1052 Points

  9. Ahwan

    900 Points

  10. rahul sharma 5

    692 Points


24,016 questions
30,946 answers
70,303 comments
29,333 users