GATE CSE
First time here? Checkout the FAQ!
x
0 votes
38 views

asked in Calculus by Boss (8.3k points)   | 38 views
is it option A?
Yes but how?

1 Answer

0 votes

I think this should be the logic.

Let f(x) = $\frac{\cos ^{m}x}{x^{n}}$

Value of x Value of n
<1 <1
<1 >=1
>=1 <1
>=1 >=1

 

Now, we focus for first 2 cases (i.e. x<1 since x has more values less than 1  rather than greter than 1)

 

Now, if we consider n>=1, then consider what will be instantaneous value of f(x).

e.g n=100 and x=0.02

$\therefore$ cosmx<1 but xn$\rightarrow$0

So, instantaneous value is very high and thus, integration of f(x) will never converge.

 

Now, if we consider n<1, then consider what will be instantaneous value of f(x).

e.g  n=0.9  x=0.02

$\therefore$  instantaneous value of f(x) will be finite. (just try taking an example)

So, this will converge.

 

So, my answer was just a calculated guess. I dont know if there is any solution by using the series expansion of cos(x).

 

 

answered ago by Veteran (10.1k points)  

Related questions

0 votes
1 answer
1
asked in Calculus by Anmol Verma Junior (765 points)   | 80 views
+2 votes
2 answers
2
asked in Calculus by Himanshu Goyal (313 points)   | 126 views
0 votes
1 answer
3
Top Users Jan 2017
  1. Debashish Deka

    7090 Points

  2. Habibkhan

    4676 Points

  3. Vijay Thakur

    4224 Points

  4. saurabh rai

    4014 Points

  5. sudsho

    3982 Points

  6. Arjun

    3138 Points

  7. GateSet

    3088 Points

  8. santhoshdevulapally

    3004 Points

  9. Bikram

    2976 Points

  10. Sushant Gokhale

    2824 Points

Monthly Topper: Rs. 500 gift card

18,816 questions
23,786 answers
51,458 comments
20,133 users