GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
64 views
Let $\frac{\mathrm{d} }{\mathrm{d} x}f(x)$ = $\frac{e^{sinx}}{x}, x>0$ if $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}d(x)$ = f(k)-f(1) then k = ______
asked in Calculus by Boss (7.9k points)  
reshown by | 64 views

1 Answer

+2 votes
Best answer

f(k) - f(1)

= $\int_{-\infty }^{k}\frac{e^{sinx}}{x}$ - $\int_{-\infty}^{1}\frac{e^{sinx}}{x}$

= $\int_{1}^{k}\frac{e^{sinx}}{x}$    ...................(1)

 

Now, we simplify the integral

I = $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}$

 

Put x2 = t

$\therefore 2x dx=dt$

$\therefore dx=\frac{dt}{2\sqrt{t}}$

 

$\therefore$ I = $\int_{1}^{16} \frac{2e^{sint}dt}{\sqrt{t}*2\sqrt{t}}$   ...........(2)

 

Now, when we simplify statement (2), we get statement (1).

 

$\therefore k=16$

answered by Veteran (15k points)  
selected by
Two errors:

1. Statement 2 should be integration from 1 to 16.

2. Statement 2 should be integration of $\frac{2e^{sint}}{\sqrt{t}*2\sqrt{t}}$
Thanks . will edit

Related questions

+1 vote
2 answers
1
asked in Calculus by mcjoshi Veteran (24.8k points)   | 207 views


Top Users May 2017
  1. akash.dinkar12

    3166 Points

  2. pawan kumarln

    1648 Points

  3. sh!va

    1600 Points

  4. Arjun

    1380 Points

  5. Bikram

    1372 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1132 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    900 Points

  10. srestha

    714 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    458 Points

  2. pawan kumarln

    274 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    234 Points

  5. bharti

    190 Points


22,778 questions
29,106 answers
65,165 comments
27,647 users