GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
60 views
Let $\frac{\mathrm{d} }{\mathrm{d} x}f(x)$ = $\frac{e^{sinx}}{x}, x>0$ if $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}d(x)$ = f(k)-f(1) then k = ______
asked in Calculus by Boss (7.2k points)  
reshown by | 60 views

1 Answer

+2 votes
Best answer

f(k) - f(1)

= $\int_{-\infty }^{k}\frac{e^{sinx}}{x}$ - $\int_{-\infty}^{1}\frac{e^{sinx}}{x}$

= $\int_{1}^{k}\frac{e^{sinx}}{x}$    ...................(1)

 

Now, we simplify the integral

I = $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}$

 

Put x2 = t

$\therefore 2x dx=dt$

$\therefore dx=\frac{dt}{2\sqrt{t}}$

 

$\therefore$ I = $\int_{1}^{16} \frac{2e^{sint}dt}{\sqrt{t}*2\sqrt{t}}$   ...........(2)

 

Now, when we simplify statement (2), we get statement (1).

 

$\therefore k=16$

answered by Veteran (14.8k points)  
selected by
Two errors:

1. Statement 2 should be integration from 1 to 16.

2. Statement 2 should be integration of $\frac{2e^{sint}}{\sqrt{t}*2\sqrt{t}}$
Thanks . will edit

Related questions

+1 vote
2 answers
1
asked in Calculus by mcjoshi Veteran (24.5k points)   | 200 views


Top Users Mar 2017
  1. rude

    4758 Points

  2. sh!va

    3014 Points

  3. Rahul Jain25

    2830 Points

  4. Kapil

    2636 Points

  5. Debashish Deka

    2450 Points

  6. 2018

    1514 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1314 Points

  9. Bikram

    1286 Points

  10. Sanjay Sharma

    1076 Points

Monthly Topper: Rs. 500 gift card

21,484 questions
26,812 answers
61,056 comments
23,065 users