GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
25 views
Let $\frac{\mathrm{d} }{\mathrm{d} x}f(x)$ = $\frac{e^{sinx}}{x}, x>0$ if $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}d(x)$ = f(k)-f(1) then k = ______
asked ago in Calculus by Boss (5.3k points)  
reshown ago by | 25 views

1 Answer

+2 votes
Best answer

f(k) - f(1)

= $\int_{-\infty }^{k}\frac{e^{sinx}}{x}$ - $\int_{-\infty}^{1}\frac{e^{sinx}}{x}$

= $\int_{1}^{k}\frac{e^{sinx}}{x}$    ...................(1)

 

Now, we simplify the integral

I = $\int_{1}^{4}\frac{2e^{sinx^{2}}}{x}$

 

Put x2 = t

$\therefore 2x dx=dt$

$\therefore dx=\frac{dt}{2\sqrt{t}}$

 

$\therefore$ I = $\int_{1}^{16} \frac{2e^{sint}dt}{\sqrt{t}*2\sqrt{t}}$   ...........(2)

 

Now, when we simplify statement (2), we get statement (1).

 

$\therefore k=16$

answered ago by Veteran (10.1k points)  
selected ago by
Two errors:

1. Statement 2 should be integration from 1 to 16.

2. Statement 2 should be integration of $\frac{2e^{sint}}{\sqrt{t}*2\sqrt{t}}$
Thanks . will edit

Related questions

+1 vote
2 answers
1
asked in Calculus by mcjoshi Veteran (21.1k points)   | 160 views
+2 votes
1 answer
3
Top Users Jan 2017
  1. Debashish Deka

    7090 Points

  2. Habibkhan

    4676 Points

  3. Vijay Thakur

    4224 Points

  4. saurabh rai

    4014 Points

  5. sudsho

    3982 Points

  6. Arjun

    3138 Points

  7. GateSet

    3088 Points

  8. santhoshdevulapally

    3004 Points

  9. Bikram

    2976 Points

  10. Sushant Gokhale

    2824 Points

Monthly Topper: Rs. 500 gift card

18,816 questions
23,786 answers
51,458 comments
20,133 users