GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
306 views

Find the coefficient of x83 in (x5+ x8+ x11+ x14+ x17)10 ?

asked in Combinatory by Veteran (11.5k points)   | 306 views
can somebody provide me exact answer........

Debashish Deka's ans is correct! What else you need?

2 Answers

+11 votes
Best answer

$\begin{align*} &\left [ {\color{red}{\bf x^{83}}} \right ] : \left [ \left ( x^5+x^8 + x^{11} + x^{14} + x^{17}\right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{83}}} \right ] :\left [ x^{50}\left ( 1+x^3 + x^{6} + x^{9} + x^{12} \right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] :\left [\left ( 1+x^3 + x^{6} + x^{9} + x^{12} \right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] :\left [ \left \{ 1+(x^3)^1 + (x^{3})^2 + (x^{3})^3 + (x^{3})^4 \right \}^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \left \{ \frac{1-(x^3)^{4+1}}{1-(x^3)} \right \}^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \left ( 1-x^{15} \right )^{10}.\frac{1}{\left ( 1-x^3 \right )^{10}} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \sum_{r=0}^{10}\binom{10}{r}\left ( -x^{15} \right )^r \; . \; \sum_{k=0}^{\infty}\binom{10+k-1}{k} . (x^3)^k \right ] \\ \end{align*}$

 

Now,

$\begin{align*} &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \sum_{r=0}^{10}\binom{10}{r}\left ( -x^{15} \right )^r \; . \; \sum_{k=0}^{\infty}\binom{10+k-1}{k} . (x^3)^k \right ] \\ \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \begin{cases} (-1)^0.\binom{10}{0}.\binom{10+11-1}{11} \qquad r = 0, k = 11 \\ \\ (-1)^1.\binom{10}{1}.\binom{10+6-1}{6} \qquad r = 1, k = 6 \\ \\ (-1)^2.\binom{10}{2}.\binom{10+1-1}{1} \qquad r = 2, k = 1 \\ \end{cases} \\ \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \begin{cases} +\binom{10}{0}.\binom{20}{11} \qquad r = 0, k = 11 \\ \\ -\binom{10}{1}.\binom{15}{6} \qquad r = 1, k = 6 \\ \\ +\binom{10}{2}.\binom{10}{1} \qquad r = 2, k = 1 \\ \end{cases} \end{align*}$

 


 

NOTE:

1. $1+x+x^2+x^3+.....x^n = \frac{1-x^{n+1}}{1-x}$

2. $\frac{1}{(1-x)^n} = \sum_{r=0}^{\infty}\binom{n+r-1}{r}.x^r$

3. $\left [ x^{83} \right ]$ means coefficient of $x^{83}$ of the whole expression.

answered by Veteran (47k points)  
selected by
+4 votes

Coefficient of x83 in (x5+ x8+ x11+ x14+ x17)10 

= Coefficient of x33 in (1 + x+ x+ x+ x12)   [Just took x5 common so it's x50(1 + x+ x+ x+ x12)10 ]

= Coefficient of x33 in [1-(x3)5 / 1-x ]^10 [Applied sum of GP i.e a(1-rn)/(1-r) where r is common ration and a is first term]

=  Coefficient of x33 in (1 - x15 )10 (1 - x)-10 

= 10C0 * (-1)0 * -10C11 * (-1)11 10C1 * (-1)1 * -10C6 * (-1)610C2 * (-1)2 * -10C1 * (-1)--> now it can be solved :)

To solve futher use extended bionomial theorem ie -nCr  =  (n+r-1)C* (-1)r

answered by Loyal (3.5k points)  
is the answer = 1294080

20C11  - 10* 15C6  + 45* 10C1


Top Users May 2017
  1. akash.dinkar12

    3154 Points

  2. pawan kumarln

    1636 Points

  3. sh!va

    1600 Points

  4. Arjun

    1360 Points

  5. Bikram

    1322 Points

  6. Devshree Dubey

    1262 Points

  7. Debashish Deka

    1132 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    900 Points

  10. srestha

    710 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    408 Points

  2. pawan kumarln

    262 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    234 Points

  5. LeenSharma

    138 Points


22,772 questions
29,098 answers
65,132 comments
27,639 users