GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
240 views

Find the coefficient of x83 in (x5+ x8+ x11+ x14+ x17)10 ?

asked in Combinatory by Veteran (11.4k points)   | 240 views
can somebody provide me exact answer........

Debashish Deka's ans is correct! What else you need?

2 Answers

+11 votes
Best answer

$\begin{align*} &\left [ {\color{red}{\bf x^{83}}} \right ] : \left [ \left ( x^5+x^8 + x^{11} + x^{14} + x^{17}\right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{83}}} \right ] :\left [ x^{50}\left ( 1+x^3 + x^{6} + x^{9} + x^{12} \right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] :\left [\left ( 1+x^3 + x^{6} + x^{9} + x^{12} \right )^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] :\left [ \left \{ 1+(x^3)^1 + (x^{3})^2 + (x^{3})^3 + (x^{3})^4 \right \}^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \left \{ \frac{1-(x^3)^{4+1}}{1-(x^3)} \right \}^{10} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \left ( 1-x^{15} \right )^{10}.\frac{1}{\left ( 1-x^3 \right )^{10}} \right ] \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \sum_{r=0}^{10}\binom{10}{r}\left ( -x^{15} \right )^r \; . \; \sum_{k=0}^{\infty}\binom{10+k-1}{k} . (x^3)^k \right ] \\ \end{align*}$

 

Now,

$\begin{align*} &\left [ {\color{red}{\bf x^{33}}} \right ] : \left [ \sum_{r=0}^{10}\binom{10}{r}\left ( -x^{15} \right )^r \; . \; \sum_{k=0}^{\infty}\binom{10+k-1}{k} . (x^3)^k \right ] \\ \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \begin{cases} (-1)^0.\binom{10}{0}.\binom{10+11-1}{11} \qquad r = 0, k = 11 \\ \\ (-1)^1.\binom{10}{1}.\binom{10+6-1}{6} \qquad r = 1, k = 6 \\ \\ (-1)^2.\binom{10}{2}.\binom{10+1-1}{1} \qquad r = 2, k = 1 \\ \end{cases} \\ \\ &\left [ {\color{red}{\bf x^{33}}} \right ] : \begin{cases} +\binom{10}{0}.\binom{20}{11} \qquad r = 0, k = 11 \\ \\ -\binom{10}{1}.\binom{15}{6} \qquad r = 1, k = 6 \\ \\ +\binom{10}{2}.\binom{10}{1} \qquad r = 2, k = 1 \\ \end{cases} \end{align*}$

 


 

NOTE:

1. $1+x+x^2+x^3+.....x^n = \frac{1-x^{n+1}}{1-x}$

2. $\frac{1}{(1-x)^n} = \sum_{r=0}^{\infty}\binom{n+r-1}{r}.x^r$

3. $\left [ x^{83} \right ]$ means coefficient of $x^{83}$ of the whole expression.

answered by Veteran (41.1k points)  
selected by
+4 votes

Coefficient of x83 in (x5+ x8+ x11+ x14+ x17)10 

= Coefficient of x33 in (1 + x+ x+ x+ x12)   [Just took x5 common so it's x50(1 + x+ x+ x+ x12)10 ]

= Coefficient of x33 in [1-(x3)5 / 1-x ]^10 [Applied sum of GP i.e a(1-rn)/(1-r) where r is common ration and a is first term]

=  Coefficient of x33 in (1 - x15 )10 (1 - x)-10 

= 10C0 * (-1)0 * -10C11 * (-1)11 10C1 * (-1)1 * -10C6 * (-1)610C2 * (-1)2 * -10C1 * (-1)--> now it can be solved :)

To solve futher use extended bionomial theorem ie -nCr  =  (n+r-1)C* (-1)r

answered by Loyal (3.5k points)  
Top Users Feb 2017
  1. Arjun

    5288 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2378 Points

  6. sriv_shubham

    2308 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1690 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,860 questions
26,012 answers
59,674 comments
22,114 users