First time here? Checkout the FAQ!
+1 vote
What is the time complexity of quick sort when

 (i) Choosing median of sorted array as pivot.
asked in DS by Veteran (52.4k points)   | 73 views


median element divides partitions into almost equall but not 1 and (n-1) [partitions]

but the array is sorted

if array is 1,2,3,4,5,6.(median =3) assume it divides into [1,2] 3  [4,5,6]

1 Answer

+4 votes
Best answer

When we choose median as pivot , this means after applying partition the division into 2 subarrays is predefined that it will get divided into 2 halves..So recurrence relation for time will be :

          T(n)   =   2T(n/2) + O(n)  [ O(n) time is required for partition algorithm ]

==>    T(n)   =   θ(nlogn)  [ i.e. as division into subarrays is prespecified so worst case = best case = average case ]

Hence θ(nlogn) is the correct answer for the given scenario..

If however , we say central element is chosen as pivot..So it may go either at first or last or middle of array..So times will differ in that case and hence worst case will be O(n2)..

answered by Veteran (65.1k points)  
selected by
is there any difference between middle element and median elelment
As I said whenever we say median it means middle element of sorted array..But what is middle element for an unsorted array may not be the middle element of the sorted array..It may go elsewhere after applying partition algorithm..

Hope this lets u understand the difference..
ok tnks :)

Related questions

0 votes
0 answers
asked in DS by vaishali jhalani Boss (6k points)   | 31 views

Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2728 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1572 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1362 Points

  9. Bikram

    1334 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,516 questions
26,842 answers
23,176 users