GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
118 views

A group G in which (ab)2 = a2b2 for all a,b in G is neccessarily

A. finite
B. cyclic
C. of order two
D. Abelian

please prove it
ands: D   

asked in Set Theory & Algebra by Veteran (14.7k points)   | 118 views

2 Answers

+2 votes
Best answer

Abelian can be proved as follows:

answered by Active (1.7k points)  
selected by
what is identity element and inverse?
@Vijay. Why do you need identity and inverse? They have already given that its a group. So, they exist.

#Sushant Gokhale ? do you have any other idea of proving it to follow commutative property. If yes..please share

@debashish. We need to assume the operator here since they havent given the operator. So, your answer as well as above answer is correct.

Other approach:

(ab)2 = a2b2

$\therefore$ abab = aabb

 

Now, for group cancellation law holds.

$\therefore$ bab = abb

$\therefore$ ba = ab

 

Thus, proved.

"They have already given that its a group" yes, you're right then will surely exist
+3 votes
$$\begin{align*} & {\color{blue}{(S \;, \;\#)}}\;\; \text{ : is a Abelian Group if it satisfies all the following properties } \\ \\ &\begin{cases} & 1.\text{ Closure} \\ & 2.\text{ Associative} \\ & 3.\text{ Identity element exits} \\ & 4.\text{ Inverse for all elements} \in S \\ & 5.\text{ Commutative} \\ \end{cases} \\ \\ \hline \\ &\text{ A } {\color{red}{\bf \text{group}}} \text{ satisfies properties } \;\; {\color{blue}{1,2,3,4}} \\ &\text{ When a group } \;\; {\color{blue}{(S \;, \;\#)}}\;\; \text{satisfies commutative property} \\ &\Rightarrow {\color{blue}{(S \;, \;\#)}}\;\; \text{is } {\color{red}{\bf \text{Abelian}}} \text{ also.} \\ \\ \hline \\ \end{align*}$$

$\begin{align*} &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right )^2 \\ &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right ) \# \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{LHS} = a \; \# \; \left (\bf b \; \# \; a \right ) \; \# \; b \\\\ \hline \\ &\Rightarrow \text{RHS} = a^2 \; \# \; b^2 \\ &\Rightarrow \text{RHS} = \left ( a \; \# \; a \right ) \# \left ( b \; \# \; b \right ) \\ &\Rightarrow \text{RHS} = a \; \# \; \left (\bf a \; \# \; b \right ) \; \# \; b \\\\ \hline \\ &\text{Given LHS = RHS} \\ &\Rightarrow \left ( b \; \# \; a \right ) = \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{Given group follows commutative property }\\ &\Rightarrow \text{Given group is} {\color{red}{\bf \text{Abelian}}} & \\ \end{align*}$
answered by Veteran (48.6k points)  


Top Users Jun 2017
  1. Bikram

    3912 Points

  2. Arnab Bhadra

    1550 Points

  3. Hemant Parihar

    1502 Points

  4. Niraj Singh 2

    1501 Points

  5. Debashish Deka

    1480 Points

  6. junaid ahmad

    1432 Points

  7. pawan kumarln

    1366 Points

  8. Arjun

    1246 Points

  9. Rupendra Choudhary

    1242 Points

  10. rahul sharma 5

    1240 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 26 - Jul 02
  1. pawan kumarln

    498 Points

  2. akankshadewangan24

    404 Points

  3. Arjun

    286 Points

  4. Debashish Deka

    234 Points

  5. Abhisek Das

    230 Points


23,435 questions
30,153 answers
67,633 comments
28,503 users