GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
69 views

A group G in which (ab)2 = a2b2 for all a,b in G is neccessarily

A. finite
B. cyclic
C. of order two
D. Abelian

please prove it
ands: D   

asked ago in Set Theory & Algebra by Veteran (11.4k points)   | 69 views

2 Answers

+1 vote
Best answer

Abelian can be proved as follows:

answered ago by Active (1.5k points)  
selected ago by
what is identity element and inverse?
@Vijay. Why do you need identity and inverse? They have already given that its a group. So, they exist.

#Sushant Gokhale ? do you have any other idea of proving it to follow commutative property. If yes..please share

@debashish. We need to assume the operator here since they havent given the operator. So, your answer as well as above answer is correct.

Other approach:

(ab)2 = a2b2

$\therefore$ abab = aabb

 

Now, for group cancellation law holds.

$\therefore$ bab = abb

$\therefore$ ba = ab

 

Thus, proved.

"They have already given that its a group" yes, you're right then will surely exist
+3 votes
$$\begin{align*} & {\color{blue}{(S \;, \;\#)}}\;\; \text{ : is a Abelian Group if it satisfies all the following properties } \\ \\ &\begin{cases} & 1.\text{ Closure} \\ & 2.\text{ Associative} \\ & 3.\text{ Identity element exits} \\ & 4.\text{ Inverse for all elements} \in S \\ & 5.\text{ Commutative} \\ \end{cases} \\ \\ \hline \\ &\text{ A } {\color{red}{\bf \text{group}}} \text{ satisfies properties } \;\; {\color{blue}{1,2,3,4}} \\ &\text{ When a group } \;\; {\color{blue}{(S \;, \;\#)}}\;\; \text{satisfies commutative property} \\ &\Rightarrow {\color{blue}{(S \;, \;\#)}}\;\; \text{is } {\color{red}{\bf \text{Abelian}}} \text{ also.} \\ \\ \hline \\ \end{align*}$$

$\begin{align*} &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right )^2 \\ &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right ) \# \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{LHS} = a \; \# \; \left (\bf b \; \# \; a \right ) \; \# \; b \\\\ \hline \\ &\Rightarrow \text{RHS} = a^2 \; \# \; b^2 \\ &\Rightarrow \text{RHS} = \left ( a \; \# \; a \right ) \# \left ( b \; \# \; b \right ) \\ &\Rightarrow \text{RHS} = a \; \# \; \left (\bf a \; \# \; b \right ) \; \# \; b \\\\ \hline \\ &\text{Given LHS = RHS} \\ &\Rightarrow \left ( b \; \# \; a \right ) = \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{Given group follows commutative property }\\ &\Rightarrow \text{Given group is} {\color{red}{\bf \text{Abelian}}} & \\ \end{align*}$
answered ago by Veteran (34.9k points)  
Top Users Jan 2017
  1. Debashish Deka

    7090 Points

  2. Habibkhan

    4676 Points

  3. Vijay Thakur

    4224 Points

  4. saurabh rai

    4014 Points

  5. sudsho

    3982 Points

  6. Arjun

    3138 Points

  7. GateSet

    3088 Points

  8. santhoshdevulapally

    3004 Points

  9. Bikram

    2976 Points

  10. Sushant Gokhale

    2824 Points

Monthly Topper: Rs. 500 gift card

18,816 questions
23,786 answers
51,458 comments
20,133 users