GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
101 views

A group G in which (ab)2 = a2b2 for all a,b in G is neccessarily

A. finite
B. cyclic
C. of order two
D. Abelian

please prove it
ands: D   

asked in Set Theory & Algebra by Veteran (14.4k points)   | 101 views

2 Answers

+2 votes
Best answer

Abelian can be proved as follows:

answered by Active (1.7k points)  
selected by
what is identity element and inverse?
@Vijay. Why do you need identity and inverse? They have already given that its a group. So, they exist.

#Sushant Gokhale ? do you have any other idea of proving it to follow commutative property. If yes..please share

@debashish. We need to assume the operator here since they havent given the operator. So, your answer as well as above answer is correct.

Other approach:

(ab)2 = a2b2

$\therefore$ abab = aabb

 

Now, for group cancellation law holds.

$\therefore$ bab = abb

$\therefore$ ba = ab

 

Thus, proved.

"They have already given that its a group" yes, you're right then will surely exist
+3 votes
$$\begin{align*} & {\color{blue}{(S \;, \;\#)}}\;\; \text{ : is a Abelian Group if it satisfies all the following properties } \\ \\ &\begin{cases} & 1.\text{ Closure} \\ & 2.\text{ Associative} \\ & 3.\text{ Identity element exits} \\ & 4.\text{ Inverse for all elements} \in S \\ & 5.\text{ Commutative} \\ \end{cases} \\ \\ \hline \\ &\text{ A } {\color{red}{\bf \text{group}}} \text{ satisfies properties } \;\; {\color{blue}{1,2,3,4}} \\ &\text{ When a group } \;\; {\color{blue}{(S \;, \;\#)}}\;\; \text{satisfies commutative property} \\ &\Rightarrow {\color{blue}{(S \;, \;\#)}}\;\; \text{is } {\color{red}{\bf \text{Abelian}}} \text{ also.} \\ \\ \hline \\ \end{align*}$$

$\begin{align*} &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right )^2 \\ &\Rightarrow \text{LHS} = \left ( a \; \# \; b \right ) \# \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{LHS} = a \; \# \; \left (\bf b \; \# \; a \right ) \; \# \; b \\\\ \hline \\ &\Rightarrow \text{RHS} = a^2 \; \# \; b^2 \\ &\Rightarrow \text{RHS} = \left ( a \; \# \; a \right ) \# \left ( b \; \# \; b \right ) \\ &\Rightarrow \text{RHS} = a \; \# \; \left (\bf a \; \# \; b \right ) \; \# \; b \\\\ \hline \\ &\text{Given LHS = RHS} \\ &\Rightarrow \left ( b \; \# \; a \right ) = \left ( a \; \# \; b \right ) \\ &\Rightarrow \text{Given group follows commutative property }\\ &\Rightarrow \text{Given group is} {\color{red}{\bf \text{Abelian}}} & \\ \end{align*}$
answered by Veteran (41.3k points)  
Top Users Feb 2017
  1. Arjun

    5490 Points

  2. Bikram

    4266 Points

  3. Habibkhan

    3972 Points

  4. Aboveallplayer

    3126 Points

  5. Debashish Deka

    2646 Points

  6. sriv_shubham

    2328 Points

  7. Smriti012

    2270 Points

  8. Arnabi

    2114 Points

  9. sh!va

    1780 Points

  10. mcjoshi

    1702 Points

Monthly Topper: Rs. 500 gift card

20,905 questions
26,051 answers
59,775 comments
22,189 users