GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
123 views

asked in Probability by Veteran (14.6k points)  
retagged by | 123 views

1 Answer

+7 votes
Best answer

A random variable $x$ takes values $0,1,2,3,4,5...............$ with probability proportional to 

$\left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, I can write $P(x|x\geq i:i=0,1,2,3,4........) \propto \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

OR, In other words

  • $P(x|x\geq i:i=0,1,2,3,4........) = M \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, $P(x= 0) = M \left ( 0+1 \right )\left ( \frac{1}{5} \right )^0 = M.1$

$P(x= 1) = M \left ( 1+1 \right )\left ( \frac{1}{5} \right )^1 = M.\frac{2}{5}$

$P(x= 2) = M \left ( 2+1 \right )\left ( \frac{1}{5} \right )^2 = M.\frac{3}{25}$

This thing ends upto infinity ....

Now, Applying the property, that $P(x|x\geq i:i=0,1,2,3,4........) = 1$

  • $M.1.\frac{1}{5}^{0} + M.2.\frac{1}{5}^{1} + M.3.\frac{1}{5}^{2}............$ = $1$
  • $M\left ( 1 + 2.x + 3.x^{2}............... \right ) = 1$

Now, If I apply the last formula from the given figure,

 

I would end up getting $M\left ( 1 + 2.x + 3.x^{2} + 4.x^3 +5.x^4............... \right )$

OR 

This is an arithmetico - geometric progression also. So, that technique also helps here.

$A = 1 + 2x + 3x^{2} + 4x^{3}.............$   

Now, Multiply by $x$,

$Ax = 1x + 2x^{2} + 3x^{3} + 4x^{4}.............$

  • $A(1-x) = 1 + x + x^{2} + x^{3}.............$
  • $A(1-x) = \frac{1}{1-x}$

Apply, any of the above methods.

Hence, Solving this , I get 

  • $M.\left ( 1-x \right )^{-2} = 1$
  • Put, $x = \frac{1}{5} => M= \frac{16}{25}$

Finally, that proportionate probability becomes,

$P(x|x\geq i:i=0,1,2,3,4........) = \left ( \frac{16}{25} \right ) \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$


The Probability that $x\leq 5$ is

$P(x\leq 5) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) = 0.9997$


 

answered by Veteran (45k points)  
edited by
this was dope !


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2728 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1378 Points

  9. Bikram

    1342 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,517 questions
26,845 answers
61,157 comments
23,181 users