GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
158 views

asked in Probability by Veteran (15.4k points)  
retagged by | 158 views

1 Answer

+7 votes
Best answer

A random variable $x$ takes values $0,1,2,3,4,5...............$ with probability proportional to 

$\left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, I can write $P(x|x\geq i:i=0,1,2,3,4........) \propto \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

OR, In other words

  • $P(x|x\geq i:i=0,1,2,3,4........) = M \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, $P(x= 0) = M \left ( 0+1 \right )\left ( \frac{1}{5} \right )^0 = M.1$

$P(x= 1) = M \left ( 1+1 \right )\left ( \frac{1}{5} \right )^1 = M.\frac{2}{5}$

$P(x= 2) = M \left ( 2+1 \right )\left ( \frac{1}{5} \right )^2 = M.\frac{3}{25}$

This thing ends upto infinity ....

Now, Applying the property, that $P(x|x\geq i:i=0,1,2,3,4........) = 1$

  • $M.1.\frac{1}{5}^{0} + M.2.\frac{1}{5}^{1} + M.3.\frac{1}{5}^{2}............$ = $1$
  • $M\left ( 1 + 2.x + 3.x^{2}............... \right ) = 1$

Now, If I apply the last formula from the given figure,

 

I would end up getting $M\left ( 1 + 2.x + 3.x^{2} + 4.x^3 +5.x^4............... \right )$

OR 

This is an arithmetico - geometric progression also. So, that technique also helps here.

$A = 1 + 2x + 3x^{2} + 4x^{3}.............$   

Now, Multiply by $x$,

$Ax = 1x + 2x^{2} + 3x^{3} + 4x^{4}.............$

  • $A(1-x) = 1 + x + x^{2} + x^{3}.............$
  • $A(1-x) = \frac{1}{1-x}$

Apply, any of the above methods.

Hence, Solving this , I get 

  • $M.\left ( 1-x \right )^{-2} = 1$
  • Put, $x = \frac{1}{5} => M= \frac{16}{25}$

Finally, that proportionate probability becomes,

$P(x|x\geq i:i=0,1,2,3,4........) = \left ( \frac{16}{25} \right ) \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$


The Probability that $x\leq 5$ is

$P(x\leq 5) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) = 0.9997$


 

answered by Veteran (47.9k points)  
edited by
this was dope !


Top Users Sep 2017
  1. Habibkhan

    6338 Points

  2. Warrior

    2220 Points

  3. Arjun

    2168 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1716 Points

  8. makhdoom ghaya

    1660 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,982 questions
33,556 answers
79,374 comments
31,014 users