GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
160 views

asked in Probability by Veteran (15.4k points)  
retagged by | 160 views

1 Answer

+7 votes
Best answer

A random variable $x$ takes values $0,1,2,3,4,5...............$ with probability proportional to 

$\left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, I can write $P(x|x\geq i:i=0,1,2,3,4........) \propto \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

OR, In other words

  • $P(x|x\geq i:i=0,1,2,3,4........) = M \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, $P(x= 0) = M \left ( 0+1 \right )\left ( \frac{1}{5} \right )^0 = M.1$

$P(x= 1) = M \left ( 1+1 \right )\left ( \frac{1}{5} \right )^1 = M.\frac{2}{5}$

$P(x= 2) = M \left ( 2+1 \right )\left ( \frac{1}{5} \right )^2 = M.\frac{3}{25}$

This thing ends upto infinity ....

Now, Applying the property, that $P(x|x\geq i:i=0,1,2,3,4........) = 1$

  • $M.1.\frac{1}{5}^{0} + M.2.\frac{1}{5}^{1} + M.3.\frac{1}{5}^{2}............$ = $1$
  • $M\left ( 1 + 2.x + 3.x^{2}............... \right ) = 1$

Now, If I apply the last formula from the given figure,

 

I would end up getting $M\left ( 1 + 2.x + 3.x^{2} + 4.x^3 +5.x^4............... \right )$

OR 

This is an arithmetico - geometric progression also. So, that technique also helps here.

$A = 1 + 2x + 3x^{2} + 4x^{3}.............$   

Now, Multiply by $x$,

$Ax = 1x + 2x^{2} + 3x^{3} + 4x^{4}.............$

  • $A(1-x) = 1 + x + x^{2} + x^{3}.............$
  • $A(1-x) = \frac{1}{1-x}$

Apply, any of the above methods.

Hence, Solving this , I get 

  • $M.\left ( 1-x \right )^{-2} = 1$
  • Put, $x = \frac{1}{5} => M= \frac{16}{25}$

Finally, that proportionate probability becomes,

$P(x|x\geq i:i=0,1,2,3,4........) = \left ( \frac{16}{25} \right ) \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$


The Probability that $x\leq 5$ is

$P(x\leq 5) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) = 0.9997$


 

answered by Veteran (47.9k points)  
edited by
this was dope !


Top Users Sep 2017
  1. Habibkhan

    8312 Points

  2. Warrior

    2862 Points

  3. rishu_darkshadow

    2796 Points

  4. Arjun

    2766 Points

  5. A_i_$_h

    2526 Points

  6. manu00x

    2094 Points

  7. nikunj

    1980 Points

  8. Bikram

    1874 Points

  9. makhdoom ghaya

    1810 Points

  10. SiddharthMahapatra

    1718 Points


26,281 questions
33,842 answers
80,382 comments
31,192 users