GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
134 views

asked in Probability by Veteran (14.6k points)  
retagged by | 134 views

1 Answer

+7 votes
Best answer

A random variable $x$ takes values $0,1,2,3,4,5...............$ with probability proportional to 

$\left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, I can write $P(x|x\geq i:i=0,1,2,3,4........) \propto \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

OR, In other words

  • $P(x|x\geq i:i=0,1,2,3,4........) = M \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$

Hence, $P(x= 0) = M \left ( 0+1 \right )\left ( \frac{1}{5} \right )^0 = M.1$

$P(x= 1) = M \left ( 1+1 \right )\left ( \frac{1}{5} \right )^1 = M.\frac{2}{5}$

$P(x= 2) = M \left ( 2+1 \right )\left ( \frac{1}{5} \right )^2 = M.\frac{3}{25}$

This thing ends upto infinity ....

Now, Applying the property, that $P(x|x\geq i:i=0,1,2,3,4........) = 1$

  • $M.1.\frac{1}{5}^{0} + M.2.\frac{1}{5}^{1} + M.3.\frac{1}{5}^{2}............$ = $1$
  • $M\left ( 1 + 2.x + 3.x^{2}............... \right ) = 1$

Now, If I apply the last formula from the given figure,

 

I would end up getting $M\left ( 1 + 2.x + 3.x^{2} + 4.x^3 +5.x^4............... \right )$

OR 

This is an arithmetico - geometric progression also. So, that technique also helps here.

$A = 1 + 2x + 3x^{2} + 4x^{3}.............$   

Now, Multiply by $x$,

$Ax = 1x + 2x^{2} + 3x^{3} + 4x^{4}.............$

  • $A(1-x) = 1 + x + x^{2} + x^{3}.............$
  • $A(1-x) = \frac{1}{1-x}$

Apply, any of the above methods.

Hence, Solving this , I get 

  • $M.\left ( 1-x \right )^{-2} = 1$
  • Put, $x = \frac{1}{5} => M= \frac{16}{25}$

Finally, that proportionate probability becomes,

$P(x|x\geq i:i=0,1,2,3,4........) = \left ( \frac{16}{25} \right ) \left ( x+1 \right )\left ( \frac{1}{5} \right )^x$


The Probability that $x\leq 5$ is

$P(x\leq 5) = P(x=0) + P(x=1) + P(x=2) + P(x=3) + P(x=4) + P(x=5) = 0.9997$


 

answered by Veteran (47.2k points)  
edited by
this was dope !


Top Users May 2017
  1. akash.dinkar12

    3568 Points

  2. pawan kumarln

    2206 Points

  3. Bikram

    1940 Points

  4. sh!va

    1682 Points

  5. Arjun

    1650 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1270 Points

  8. Angkit

    1056 Points

  9. LeenSharma

    1028 Points

  10. Arnab Bhadra

    904 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    1026 Points

  2. pawan kumarln

    832 Points

  3. Arnab Bhadra

    818 Points

  4. akash.dinkar12

    448 Points

  5. Arjun

    378 Points


22,897 questions
29,213 answers
65,339 comments
27,714 users