edited by
5,242 views
6 votes
6 votes
For the given matrix A, one of the Eigenvalue is real

$A=\begin{bmatrix} 1 &2 &3 &4 &5 \\ 5 &1 &2 &3 &4 \\ 4&5 &1 &2 &3 \\ 3&4 &5 &1 &2 \\ 2 &3 &4 &5 &1 \end{bmatrix}$

The real Eigen value is:
edited by

6 Answers

Best answer
11 votes
11 votes
Sum of all rows .
(15-x) * |Matrix| = 0
15 is a factor .
selected by
9 votes
9 votes
$\begin{bmatrix} 1-\lambda & 2 &3 & 4 & 5\\ 5& 1-\lambda & 2 & 3 & 4\\ 4& 5 & 1-\lambda &2 & 3\\ 3& 4 & 5 & 1-\lambda & 2\\ 2& 3 &4 & 5 & 1-\lambda \end{bmatrix}$

=$\begin{bmatrix} 15-\lambda & 15-\lambda &15-\lambda & 15-\lambda & 15-\lambda \\ 5& 1-\lambda & 2 & 3 & 4\\ 4& 5 & 1-\lambda &2 & 3\\ 3& 4 & 5 & 1-\lambda & 2\\ 2& 3 &4 & 5 & 1-\lambda \end{bmatrix}$

Now, taking common

=$15-\lambda\begin{bmatrix} 1 & 1 &1 & 1 & 1 \\ 5& 1-\lambda & 2 & 3 & 4\\ 4& 5 & 1-\lambda &2 & 3\\ 3& 4 & 5 & 1-\lambda & 2\\ 2& 3 &4 & 5 & 1-\lambda \end{bmatrix}$

So, ans 15
2 votes
2 votes
$\begin{bmatrix} 1 & 2 &3 & 4 &5 \\ 5 &1 &2 & 3 &4 \\ 4& 5 &1 &2 &3 \\ 3& 4 & 5 & 1 &2 \\ 2&3 & 4 & 5 & 1 \end{bmatrix}$

The characteristic equation is

$\begin{vmatrix} A-\lambda I \end{vmatrix}=0$

$\Rightarrow$$\begin{vmatrix} 1-\lambda & 2 &3 & 4 &5 \\ 5 &1-\lambda &2 & 3 &4 \\ 4& 5 &1-\lambda &2 &3 \\ 3& 4 & 5 & 1-\lambda &2 \\ 2&3 & 4 & 5 & 1-\lambda \end{vmatrix}$ =0

Applying $C_{1}\leftarrow C_{1}+C_{2}+C_{3}+C_{4}+C_{5}$

$\Rightarrow$$\begin{vmatrix} 15-\lambda & 2 &3 & 4 &5 \\ 15-\lambda &1-\lambda &2 & 3 &4 \\ 15-\lambda & 5 &1-\lambda &2 &3 \\ 15-\lambda& 4 & 5 & 1-\lambda &2 \\ 15-\lambda&3 & 4 & 5 & 1-\lambda \end{vmatrix}$ =0

Taking $15-\lambda$ as common

$\Rightarrow$$(15-\lambda)$$\begin{vmatrix} 1 & 2 &3 & 4 &5 \\ 1 &1-\lambda &2 & 3 &4 \\ 1& 5 &1-\lambda &2 &3 \\ 1& 4 & 5 & 1-\lambda &2 \\ 1&3 & 4 & 5 & 1-\lambda \end{vmatrix}$=0

$\Rightarrow$$(15-\lambda)=0$

$\Rightarrow$$\lambda=15$
1 votes
1 votes
$\left | A - \lambda I \right | =0$

$\Rightarrow \begin{vmatrix} 1 - \lambda & 2 & 3 & 4 & 5 \\ 5 & 1 - \lambda & 2 & 3 & 4 \\ 4 & 5 & 1 - \lambda & 2 & 3\\  3 & 4 &5 & 1 - \lambda &2 \\ 2 & 3 & 4 & 5 & 1 - \lambda \end{vmatrix} = 0$

Perform the row operation: $ R_1 \rightarrow R_1 + R_2 + R_3 + R_4 + R_5 $

$\Rightarrow \begin{vmatrix}
15 - \lambda & 15 - \lambda & 15 - \lambda & 15 - \lambda & 15 - \lambda \\
5 & 1 - \lambda & 2 & 3 & 4 \\
4 & 5 & 1 - \lambda & 2 & 3\\
3 & 4 &5  & 1 - \lambda &2 \\
2 & 3 & 4 & 5 & 1 - \lambda
\end{vmatrix} = 0 $

So, $ \lambda = 15 $ is the eigen value.
Answer:

Related questions

0 votes
0 votes
0 answers
2
ryandany07 asked Sep 4, 2022
336 views
For given Matrix:[ 1 2 3 1 5 1 3 1 1 ]Why does the sum of the eigen values of above matrix is the sum of diagonal elements of that matrix?
5 votes
5 votes
5 answers
3
aditi19 asked Sep 20, 2018
6,844 views
An orthogonal matrix A has eigen values 1, 2 and 4. What is the trace of the matrix
1 votes
1 votes
1 answer
4
Prince Sindhiya asked Mar 2, 2018
795 views
The eigen value of the following matrix is $\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$ $1, 1, 1$$1, 0, 0$$3, 0, 0$$0, 0, 0$