edited by
421 views

1 Answer

2 votes
2 votes
$\int_{0}^{1} \ \int_{0}^{\sqrt{1 + x^2}} \ \dfrac{dx.dy}{1+x^2 + y^2}$

 

Let $\ (1 + x^2)$  be   $a$

 

$\int_{0}^{1} \ \int_{0}^{\sqrt{1 + x^2}} \ \dfrac{dx.dy}{(\sqrt{a})^2 + y^2}$

 

$\int_{0}^{1} \ dx. \int_{0}^{\sqrt{1 + x^2}} \ \dfrac{dy}{(\sqrt{a})^2 + y^2}$

 

$\int_{0}^{1} \ dx \ .[ \dfrac{1}{\sqrt{a}}.tan^{-1}\dfrac{y}{\sqrt{a}}]$ $\left.\begin{matrix} & \sqrt{1+x^2} \\ \ \ \ \ & 0 \end{matrix}\right|$                                                          $\because \int \dfrac{1}{a^2 + x^2} = \dfrac{1}{a}tan^{-1}\dfrac{x}{a}$

 

$\int_{0}^{1} \begin{Bmatrix} \dfrac{1}{\sqrt{1+x^2}}{tan}^{-1} \dfrac{\sqrt{1+x^2}}{\sqrt{1+x^2} } - \dfrac{1}{\sqrt{1+x^2}}{tan}^{-1} \dfrac{0}{\sqrt{1+x^2}} \end{Bmatrix}dx$

 

$\int_{0}^{1} \begin{Bmatrix} \dfrac{1}{\sqrt{1+x^2}}{tan}^{-1} 1 \end{Bmatrix}dx$                   $\because tan^{-1}1 = \dfrac{\pi }{4}$

 

$\int_{0}^{1} \dfrac{\pi }{4\sqrt{1+x^2}} dx$

 

$\dfrac{\pi }{4} log(x + \sqrt{x^2 + 1})\left.\begin{matrix} & 1 \\ \ & 0 \end{matrix}\right|$                   ${\color{Red} \because  \dfrac{1}{\sqrt{a^2 + x^2}} = log(x+\sqrt{a^2 + x^2})}$

 

$\dfrac{\pi }{4}\begin{Bmatrix} log(1 + \sqrt{1 + 1}) - log(0 + \sqrt{0 + 1}) \end{Bmatrix}$

 

$\dfrac{\pi }{4}\left \{ log(1 + \sqrt{2}) - log(1) \right \}$

 

$\dfrac{\pi }{4}log(1 + \sqrt{2})$

Related questions

1 votes
1 votes
3 answers
1
sh!va asked Feb 22, 2017
426 views
The value of $\lim _{x \rightarrow 8}\left(\frac{x^{1 / 3}-2}{x-8}\right)$ is$1/4$$1/8$$1/12$$1/16$
1 votes
1 votes
1 answer
3
sh!va asked Feb 22, 2017
617 views
in given combinational logic $X=?$$X = AB'C' +A'BC'+ A'B'C+ ABC$$X = A'BC +A'BC'+ AB'C+ A'B'C'$$X = AB + BC + AC$$X= A'B'+B'C'+A'C'$
1 votes
1 votes
0 answers
4
sh!va asked Feb 22, 2017
670 views
$000, 001, 010, 011, 100\; \&$ repeats$100, 011, 010, 001, 000\; \&$ repeat$010, 011, 100, 000, 001\; \&$ repeats$101, 110, 111, 000, 001, 010, 011, 100 \;\&$ repeats