GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
379 views
asked in Combinatory by Veteran (12.8k points)   | 379 views

1 Answer

+4 votes
Best answer

In multinomial expansion of $(1+x^5+x^9)^{100}$, every term will be of form: $C(100 ; m, n, p) \times 1^m \times (x^5)^n \times (x^9)^p$, where m + n + p =100.

So, for the coefficient of $x^{23}$, (5*n + 9*p) should be equal to 23. There is only 1 pair exist for this condition to hold i.e (1,2)

So, (m, n, p) will be (97, 1, 2). Now, put these values in the term for $x^{23}$.

C(100; 97, 1, 2) =$\frac{100!}{(97! * 1! * 2!)}$ = 485100. This will be the coefficient of $x^{23}$.

 

answered by Active (2.2k points)  
edited by
in simple way... we can make X^23 using 2 times X^9 +one time X^5 ... SO C(100,2) are the ways to select two X^9 and 98 way for chose X^5

so coefficient of X^23 = C(100,2)*98= 485100
Plz xplain


Top Users Jun 2017
  1. Bikram

    2512 Points

  2. Hemant Parihar

    1480 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1334 Points

  5. Niraj Singh 2

    1311 Points

  6. rahul sharma 5

    1060 Points

  7. Rupendra Choudhary

    1042 Points

  8. Debashish Deka

    888 Points

  9. Arjun

    856 Points

  10. srestha

    836 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Niraj Singh 2

    1306 Points

  2. Bikram

    768 Points

  3. junaid ahmad

    502 Points

  4. akankshadewangan24

    252 Points

  5. joshi_nitish

    250 Points


23,325 questions
29,999 answers
67,196 comments
28,337 users