GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
263 views
asked in Combinatory by Veteran (12.7k points)   | 263 views

1 Answer

+4 votes
Best answer

In multinomial expansion of $(1+x^5+x^9)^{100}$, every term will be of form: $C(100 ; m, n, p) \times 1^m \times (x^5)^n \times (x^9)^p$, where m + n + p =100.

So, for the coefficient of $x^{23}$, (5*n + 9*p) should be equal to 23. There is only 1 pair exist for this condition to hold i.e (1,2)

So, (m, n, p) will be (97, 1, 2). Now, put these values in the term for $x^{23}$.

C(100; 97, 1, 2) =$\frac{100!}{(97! * 1! * 2!)}$ = 485100. This will be the coefficient of $x^{23}$.

 

answered by Active (2.2k points)  
edited by
in simple way... we can make X^23 using 2 times X^9 +one time X^5 ... SO C(100,2) are the ways to select two X^9 and 98 way for chose X^5

so coefficient of X^23 = C(100,2)*98= 485100
Plz xplain
Members at the site
Top Users Feb 2017
  1. Arjun

    4898 Points

  2. Bikram

    4102 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. sriv_shubham

    2288 Points

  6. Smriti012

    2222 Points

  7. Arnabi

    1946 Points

  8. Debashish Deka

    1920 Points

  9. mcjoshi

    1614 Points

  10. sh!va

    1462 Points

Monthly Topper: Rs. 500 gift card

20,793 questions
25,951 answers
59,557 comments
21,976 users