GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
265 views

Consider the following set of equations

$$x+2y=5\\
4x+8y=12\\
3x+6y+3z=15$$

This set

  1. has unique solution

  2. has no solution

  3. has finite number of solutions

  4. has infinite number of solutions

 

asked in Linear Algebra by Veteran (56.3k points)   | 265 views

2 Answers

+9 votes
Best answer
There are no solutions.

If we multiply 1st equation by 4, we get

4x + 8y = 20

But 2nd equation says

4x + 8y = 12

Clearly, there can not be any pair of (x,y), which satisfies both equations.
answered by Veteran (10.5k points)  
selected by
I am getting rank of augmented matrix as 3 as well as rank of A =3 so according to this condition there must be a unique solution , although it shouldn't exist but then how can it contradict ?
Rank of A is not 3. Recheck your method.
+2 votes

The rank of augemented matrix(|AB|=3) and coefficient matrix|A|=2 is not same! hence there is no solution.


 

answered by Veteran (11.7k points)  
Top Users Jan 2017
  1. Debashish Deka

    8608 Points

  2. sudsho

    5398 Points

  3. Habibkhan

    4718 Points

  4. Bikram

    4522 Points

  5. Vijay Thakur

    4468 Points

  6. saurabh rai

    4222 Points

  7. Arjun

    4122 Points

  8. santhoshdevulapally

    3742 Points

  9. Sushant Gokhale

    3576 Points

  10. GateSet

    3394 Points

Monthly Topper: Rs. 500 gift card

19,177 questions
24,073 answers
52,975 comments
20,310 users