Suppose $A = \{a, b, c, d\}$ and $\Pi_1$ is the following partition of A
$\Pi_1 = \left\{\left\{a, b, c\right\}\left\{d\right\}\right\}$
List the ordered pairs of the equivalence relations induced by $\Pi_1$.
Draw the graph of the above equivalence relation.
Let $\Pi_2 = \left\{\left\{a\right\}, \left\{b\right\}, \left\{C\right\}, \left\{d\right\}\right\}$
$\Pi_3 = \left\{\left\{a, b, c, d\right\}\right\}$
and $\Pi_4 = \left\{\left\{a, b\right\}, \left\{c,d\right\}\right\}$
Draw a Poset diagram of the poset, $\left\langle\left\{\Pi_1, \Pi_2, \Pi_3, \Pi_4\right\}, \text{ refines } \right\rangle$.
3704 Points
1484 Points
1432 Points
1408 Points
1311 Points
1194 Points
1132 Points
994 Points
932 Points
930 Points
1960 Points
1306 Points
502 Points
410 Points
388 Points
Gatecse
@Arjun Sir the problem is not with the ...