First time here? Checkout the FAQ!
0 votes

Let $f(x)= |x|^{3/2}, x \in \mathbb{R}$. Then

  1. $f$ is uniformly continuous.
  2. $f$ is continuous, but not differentiable at $x=0$.
  3. $f$ is differentiable and $f ' $ is continuous.
  4. $f$ is differentiable, but $f ' $ is discontinuous at $x=0$.
asked in Calculus by Veteran (29k points)   | 187 views
Answer is option B because when we draw  graph of the given function there is a cusp at x=0 and the function is continuous at x=0. whenever we have cusp at a point then at that point the fuction is not differentiable..

3 Answers

0 votes
f is differential & first derivative of f is discontinuous at x =0
answered by Veteran (45.3k points)  
0 votes

The graph for $f(x) = |x|^{\frac{3}{2}}$ looks like :

And the plot of its derivative is :

Clearly : option D

f(x) is not continuous because the domain is all R, but the plot is only possible for positive real numbers.

answered by Loyal (4.1k points)  
0 votes

More insight here,|x|^(3%2F2)

I think answer should be B

answered by (11 points)  

Why left part is not imaginary like this

What will be the definition of this function

$$f(x) = \begin{cases} x^{3/2} &\text{ for }x \geq 0 \\ (-x)^{3/2} &\text{ for } x<0 \end{cases}$$


$$f(x) = \begin{cases} x^{3/2} &\text{ for }x \geq 0 \\ -(x^{3/2}) &\text{ for } x<0 \end{cases}$$ ?

i think the first breakdown of function is correct beacause we wont be able to take the square root of negative number...
Any reference?
Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,989 answers
22,046 users