GATE CSE
First time here? Checkout the FAQ!
x
0 votes
163 views

$$\int_{0}^{1} \ln x\, \mathrm{d}x=$$

  1. $1$
  2. $-1$
  3. $\infty $
  4. $-\infty $
  5. None of the above.
asked in Calculus by Veteran (30.3k points)   | 163 views

1 Answer

+4 votes
Best answer

Use Integration by Parts

(integral)ln(x) dx

set 
  u = ln(x),    dv = dx 
then we find 
  du = (1/x) dx,    v = x

substitute

(integral) ln(x) dx = (integral) u dv

and use integration by parts

= uv - (integral) v du

substitute u=ln(x), v=x, and du=(1/x)dx

= ln(x) x - (integral) x (1/x) dx 
= ln(x) x - (integral) dx 
= ln(x) x - x + C 
= x ln(x) - x + C. 

Now Put Limits

[ln(1)-1+C]-[0-0+C]= -1

Note-Lim [xlnx] = 0.
        x->0

answered by Active (2.1k points)  
selected by
ans -1  

but note 1 thing it is definite integral not contains constatnt


Top Users Jul 2017
  1. Bikram

    3782 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1832 Points

  4. joshi_nitish

    1494 Points

  5. Arnab Bhadra

    1096 Points

  6. Arjun

    1054 Points

  7. Hemant Parihar

    1050 Points

  8. Shubhanshu

    972 Points

  9. Ahwan

    876 Points

  10. akash.dinkar12

    642 Points


23,953 questions
30,895 answers
70,108 comments
29,273 users