GATE CSE
First time here? Checkout the FAQ!
x
+8 votes
793 views
There are two elements $x,\:y$ in a group $(G,*)$ such that every element in the group can be written as a product of some number of $x$'s and $y$'s in some order. It is known that
$$x*x=y*y=x*y*x*y=y*x*y*x=e$$
where $e$ is the identity element. The maximum number of elements in such a group is ____.
asked in Set Theory & Algebra by Veteran (73.2k points)  
retagged by | 793 views

4 Answers

+13 votes

And so the answer is 4.

answered by Veteran (18.8k points)  
tell the elements...
can you see the image?

I didn't get it.How you got the 4 elements as (x,y,e,xy).?
I know i'm wrong but shouldn't it be (x,y,yx,xy)???

Above method is understandable but isn't there some easy way to solve this question ...?
+9 votes

the elements which are visible in this group at the first site are = {x, y, e, x*y, y*x}.

we can try generating other elements like
x*x
x*x*x
x*x*x*x
but these will simplify out to 
e
x
e
respectively.

Property of a Group is that There can be only one identity element in a group, and each element in a group has exactly one inverse element.

we try to obtain inverse of x*y :
x*x = e
x*x*y = e*y
x*xy*y = y*y
x*xy*y = e
x*x*xy*y = x*e
e*xy*y = x
xy*y*x = x*x
xy * yx = e

This shows us that x*y has another inverse which is y*x. But as per the properties of a Group an element has a unique inverse. We already know that x*y is its own inverse, this is given to us. This makes us to conclude that x*y and y*x are same elements. Since it is given that G is a group and x*y and y*x both are its elements. So to keep them as elements of a Group they must be the same.

Hence there are only 4 elements in the Group (G,*), which are = {x, y, e, x*y} or we can write this set G as = {x, y, e, y*x}

answered by Veteran (26.8k points)  
+6 votes

x* x=e, x is its own inverse 
y *y= e, y is its own inverse

(x *y)*( x* y)= e, x *y is its own inverse

(y* x)* (y* x)= e, y* x is its own inverse
also x* x* e= e*e can be rewritten as follows

x* y* y *x= e *y* y* e= e, (Since y *y= e)
(x* y)* (y* x)= e shows that (x *y) and (y *x)
are each other’s inverse and we already know that
(x *y) and (y* x) are inverse of its own.

As per (G,*) to be group any element should have
only one inverse element (unique)

This implies x *y= y* x (is one element)

So the elements of such group are 4 which are {x, y,e,x *y }.

 
    answered by Junior (541 points)  
    +1 vote
    It is given that:

    $x$ is its own inverse.
    $y$ is its own inverse.
    $x*y$ is its own inverse.
    $y*x$ is its own inverse.

    Now i will show you that $x*y$ and $y*x$ are essentially same.
     $x*y = x*e*y = x*(x*y*x*y)*y = (x*x)*y*x*(y*y) = e*y*x*e = y*x$  (Group is associative so I do not care about brackets.)

    This turns out to be abelian group. and $x*y$ is no different from $y*x$

    Up to this point i have 4 elements - $x$, $y$, $e$, $x*y$.   (G is abelian therefore $x*y$ is same as $y*x$)
    Now see if you can have a new element. It is given that every element is product of some numbers of $x$ and $y$.
    Lets try with $x$.
    $x*\circ$, what u would like to put next to $x$ ?
    If you put $x$ then there is no use and you have to start over again because of $x*x=e$ now you have to start all over again.
    Put y next to x. : $x*y$ (this element we already have, we want different element so try multiplying further.)
    $x*y*\circ$, obviously u cant put $y$, next to $x*y$ because it will be x again: $x*y*y=x*e=x$
    (you have to put alternate.)
    Put $x$, next to $x*y$: $x*y*x$.
    This is equal to $x*x*y$ because of commutative property. $x*y*x=x*x*y=y$.
    I showed you that, once you get $x*y$ using $x$, you can not get next element by multiplying into $x*y$ further. Because of commutive property it will be again $x$ or $y$.

    Similarly, if we start with $y$, we have the same issue.

    This concludes that we can not generate further element and only four element can be there at max.
    $\{x,y,x*y,e\}$.
    There is a theorem for abelian group: If every element is its own inverse then Group G is abelian. I am not sure if proof of that theorem relates to this problem somewhere, You can check it out. :)
    answered ago by Loyal (3.5k points)  
    Top Users Jan 2017
    1. Debashish Deka

      7090 Points

    2. Habibkhan

      4676 Points

    3. Vijay Thakur

      4224 Points

    4. saurabh rai

      4014 Points

    5. sudsho

      3982 Points

    6. Arjun

      3138 Points

    7. GateSet

      3088 Points

    8. santhoshdevulapally

      3004 Points

    9. Bikram

      2976 Points

    10. Sushant Gokhale

      2824 Points

    Monthly Topper: Rs. 500 gift card

    18,816 questions
    23,786 answers
    51,458 comments
    20,133 users