458 views
The CORRECT formula for the sentence, "not all Rainy days are Cold" is

(A) $\forall d (\text{Rainy}(d) \wedge \text{~Cold}(d))$

(B) $\forall d ( \text{~Rainy}(d) \to \text{Cold}(d))$

(C) $\exists d(\text{~Rainy}(d) \to \text{Cold}(d))$

(D) $\exists d(\text{Rainy}(d) \wedge \text{~Cold}(d))$
edited | 458 views
Is there typo in last option ? please correct it !
corrected.

Not all rainy days are cold.

In other words it says "Some rainy days are cold" or "Some rainy days are not cold"

Given statement is
~Vd[R(d)->C(d)]
<=>~Vd[~R(d)VC(d)]

<=> ∃ d[R(d) ^ ~C(d)]
D)

selected
A) No rainy days are cold

B) All non-rainy days are cold

C)Some non-rainy days are cold.

D) Some rainy days are not cold.

option D
Is option (A) statement correct?
Statement A  shoud be "all days are rainy days and they are not cold "
+1 vote

not all rainy days are cold : meaning "there are some rainy days which are cold" = "some days are rainy and not cold".

∃d{R(d)  ¬C(d)}

ans = option D

(A)∀d(R(d)⋀~C(d)) = d(~(~R(d) V C(d))) (taking negation common)

=∀d(~(R(d)->C(d)))= All days are not Rainy days and also are not Cold

(B)d(~R(d)->C(d))=The day which are not Rainy day are Cold

(C)∃d(~R(d)->C(d))=∃d(R(d)VC(d))=Some day are Rainy days or some days are Cold

(D)∃d(R(d)⋀~C(d))= Some Rainy days are not Cold

= ~ (∀d(R(d)->C(d))) (taking negation common)

=not all Rainy days are Cold

edited by