GATE CSE
First time here? Checkout the FAQ!
x
+4 votes
833 views

Let $\oplus$ denote the exclusive OR (XOR) operation. Let '1' and '0' denote the binary constants. Consider the following Boolean expression for $F$ over two variables $P$ and $Q$:

$$F(P,Q)=\left( \left(1 \oplus P \right) \oplus \left( P \oplus Q \right )\right ) \oplus \left(\left(P \oplus Q\right) \oplus \left(Q \oplus 0\right)\right)$$

The equivalent expression for $F$ is

  1. $P+Q$
  2. $\overline{P+Q}$
  3. $P \oplus Q$
  4. $\overline {P \oplus Q}$
asked in Digital Logic by Veteran (87.2k points)   | 833 views

4 Answers

+11 votes
Best answer

XOR is associative and commutative. Also, $A \oplus A = 0$ and $A \oplus 1 = \overline{ A}$ and $A \oplus 0 = A$.  So
$\left( \left(1 \oplus P \right) \oplus \left( P \oplus Q \right )\right ) \oplus \left(\left(P \oplus Q\right) \oplus \left(Q \oplus 0\right)\right)$
$\implies \left(1 \oplus P \right) \oplus \left( \left( P \oplus Q \right ) \oplus \left(P \oplus Q \right) \right) \oplus \left(Q \oplus 0\right)$
$\implies  \left(1 \oplus 0 \right) \oplus \left( P \oplus Q \right) $
$\implies 1 \oplus \left(  P\oplus Q \right)$
$\implies \overline {\left( P \oplus Q\right)}$

answered by Veteran (294k points)  
edited

@Arjun pls explain this simplification 

⟹(1⊕P)⊕((P⊕Q)⊕(P⊕Q))⊕(Q⊕0)    //Sir is the expression in bold = 0 ? can u elaborate a bit ?
⟹(1⊕0)⊕(P⊕Q)

 

+7 votes

D)
Since there are only 2 variables putting in pair of values of P and Q in F and checking with the options is a time saving method.
But Lets solve it.


 

answered by Loyal (3.7k points)  
0 votes
observe the common term p ex or q in both

consider a case where p and q are equal

then p ex or q results in 0

1)in first p is ex ored  with 1

2)in second q is ex ored with 0

so if p, q are same then either of one oresults in 1 and another to 0

1 ex or  0

it is exnor
answered by (373 points)  
0 votes

We need to simplify the above expression. As the given operation is XOR, we shall see property of XOR. Let A and B be boolean variable. In A XOR B, the result is 1 if both the bits/inputs are different, else 0. Now,

( ( 1 X P) X (P X Q) ) X ( (P X Q) X (Q X 0) )

( P' X P X Q ) X ( P X Q X Q ) ( as 1 X P = P' and Q X 0 = Q )

(1 X Q) X ( P X 0) ( as P' X P = 1 , and Q X Q = 0 )

Q' X P ( as 1 X Q = Q' and P X 0 = P )

PQ + P'Q' ( XOR Expansion, A X B = AB' + A'B )

This is the final simplified expression.

Now we need to check for the options.

If we simplify option D expression.

( P X Q )' = ( PQ' + P'Q )' ( XOR Expansion, A X B = AB' + A'B )

((PQ')'.(P'Q)') ( De Morgan's law )

( P'+ Q).(P + Q') ( De Morgan's law )

P'P + PQ + P'Q' + QQ'

PQ + P'Q' ( as PP' = 0 and QQ' = 0 ) 

Hence both the equations are same. Therefore Option D. 
answered by Loyal (4k points)  


Top Users Sep 2017
  1. Habibkhan

    6504 Points

  2. Arjun

    2254 Points

  3. Warrior

    2234 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. Bikram

    1726 Points

  7. SiddharthMahapatra

    1718 Points

  8. makhdoom ghaya

    1680 Points

  9. A_i_$_h

    1668 Points

  10. rishu_darkshadow

    1554 Points


25,999 questions
33,568 answers
79,491 comments
31,035 users