GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
153 views

The minimum of the function $f(x) = x \log_{e}(x)$ over the interval $[1/2, \infty )$ is

  1. $0$
  2. $-e$
  3. $-\log_{e}(2)/2$
  4. $-1/e$
  5. None of the above
asked in Calculus by Veteran (30k points)   | 153 views

Just observe loge(x) curve carefully..

2 Answers

+3 votes
Minimum value of function occurs at end points or critical points

f'(x)=1+logx

Equate it to 0

x=1/e

f''(x)=1/x

Put x=1/e f''(x)=e so minima at 1/e

But 1/e=0.36

But x∈[1/2,infinity)

So min occurs at 1/2

So min value=1/2 log 1/2

So ans is c
answered by Veteran (31.2k points)  
we need the function to be strictly increasing also :)
In given interval f'(x)>0 so function is increasing....
yes, here it is correct :)
0 votes
$f'(x) = 1 + ln x$

Now, $f''(x) = \frac{1}{x}$ , if we put $x = \frac{1}{2}$ , it will be greater than 0 , so we have minima here. Minimum value will be $\frac{1}{2}*[ln1-ln2] = \frac{1}{2}*[0-ln2] = \frac{1}{2}*[-ln2]$

 

option c .

Please correct me if I am wrong.
answered by Boss (5.4k points)  


Top Users Jun 2017
  1. Bikram

    3704 Points

  2. Hemant Parihar

    1484 Points

  3. junaid ahmad

    1432 Points

  4. Arnab Bhadra

    1408 Points

  5. Niraj Singh 2

    1311 Points

  6. Rupendra Choudhary

    1194 Points

  7. rahul sharma 5

    1132 Points

  8. Debashish Deka

    994 Points

  9. srestha

    932 Points

  10. Arjun

    930 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 Jun 19 - 25
  1. Bikram

    1960 Points

  2. Niraj Singh 2

    1306 Points

  3. junaid ahmad

    502 Points

  4. sudsho

    410 Points

  5. akankshadewangan24

    388 Points


23,355 questions
30,066 answers
67,371 comments
28,382 users