GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
146 views

The minimum of the function $f(x) = x \log_{e}(x)$ over the interval $[1/2, \infty )$ is

  1. $0$
  2. $-e$
  3. $-\log_{e}(2)/2$
  4. $-1/e$
  5. None of the above
asked in Calculus by Veteran (29.1k points)   | 146 views

Just observe loge(x) curve carefully..

2 Answers

+3 votes
Minimum value of function occurs at end points or critical points

f'(x)=1+logx

Equate it to 0

x=1/e

f''(x)=1/x

Put x=1/e f''(x)=e so minima at 1/e

But 1/e=0.36

But x∈[1/2,infinity)

So min occurs at 1/2

So min value=1/2 log 1/2

So ans is c
answered by Veteran (30.7k points)  
we need the function to be strictly increasing also :)
In given interval f'(x)>0 so function is increasing....
yes, here it is correct :)
0 votes
$f'(x) = 1 + ln x$

Now, $f''(x) = \frac{1}{x}$ , if we put $x = \frac{1}{2}$ , it will be greater than 0 , so we have minima here. Minimum value will be $\frac{1}{2}*[ln1-ln2] = \frac{1}{2}*[0-ln2] = \frac{1}{2}*[-ln2]$

 

option c .

Please correct me if I am wrong.
answered by Boss (5.3k points)  


Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2244 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1338 Points

  8. Akriti sood

    1246 Points

  9. Bikram

    1246 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,452 questions
26,771 answers
60,972 comments
22,985 users