A set $S$ together with partial order $\ll$ is called a well order if it has no infinite descending chains, i.e. there is no infinite sequence $x_1, x_2,\ldots$ of elements from $S$ such that $x_{i+1} \ll x_i$ and $x_{i+1} \neq x_i$ for all $i$.
Consider the set of all words (finite sequence of letters $a - z$), denoted by $W$, in dictionary order.
Answer -> E)well order
Minimal Element is 'a', it is less than all elements !
a) False, after aa, we can have ab. Then aba,abb,abc.. Not limited to 24
b) False. after aa, we can have ab,aba,abc.. In fact ab(a-z)*. Not limited to 2^{24}
C)False. Why not partial order ? Dictionary order is partial order ! It is Reflexive, Antysymmetric & Transitive. Even defination of wikipedia says it is !
D) False.Dictionary order is well order .
Defination of Dictionary order -> Ref -> https://en.wikipedia.org/wiki/Lexicographical_order
Given two partially ordered sets A and B, the lexicographical order on the Cartesian product A × B is defined as
3704 Points
1484 Points
1432 Points
1408 Points
1311 Points
1194 Points
1148 Points
1112 Points
932 Points
930 Points
1960 Points
1306 Points
502 Points
410 Points
392 Points
Gatecse
@Arjun Sir the problem is not with the ...