GATE CSE
First time here? Checkout the FAQ!
x
+4 votes
216 views

Solve min $x^{2}+y^{2}$

subject to

       $x + y \geq 10,$

   $2x + 3y \geq 20,$

           $x \geq 4,$

           $y \geq 4.$

  1. $32$
  2. $50$
  3. $52$
  4. $100$
  5. None of the above
asked in Calculus by Veteran (30.4k points)   | 216 views

4 Answers

+4 votes
Best answer
Answer -> Option B) 50

 x>=4 and y>=4 , So we can take both x =5 & y = 5

x+y >= 10 => Satisfied , 5+5 = 10

2x + 3y >= 20. Satisfied.

This is infact minimum value.

Other options =>

4,4 => x+y constraint fail

4,5 => x+y fail

6,4 => Still giving 52 as sum which is more than 50 !,  This can not  be answer.

7,3 => 49+9 > 58 > 50.
answered by Veteran (42k points)  
selected by
+1 vote
I think it's the easiest one,
approach - first we just break to the minimum conditions so every thing can be meet. minimum value such that every thing can satisfy is 5 , 5 which gives = 50,

now all the possiblities are decreasing one number and increasing one. but as u think . as u will decrease one number the value that will decrease will be less then the after effect of increasing the other number.
like 4 and 6 . value that decreases due to decreasing it from 5 is (25-16) = 9

but the increase in the value due to increasing 5 to 6 is (36-25)= 11 , so the best answer will be the mid point i.e 5,5 = 50
answered by Veteran (13.9k points)  
0 votes

option c) 52

 

Here , we have constraints x>=4 and y>=4

In order to satisfy the equation x+y >= 10 , we need to have min value of x and y as 4 and 6 .

so , min(x2 + y2) = 16+36 = 52

answered by Boss (5.4k points)  

why B is not the ans

because minimum of min(x+ y2)

Here , we have constraints x>=4 and y>=4

In order to satisfy the equation x+y >= 10 , we need to have min value of x and y as 5 and 5.

so , min(x+ y2) = 25+25 = 50

@Arjun ,

why 52 is answer ? It should be 50.

 

0 votes
x+y≥10   

  2x+3y≥20,

  x≥4,

  y≥4.

 we have to choose that value of x & y which satifies all the equations,

as well as give the min ( x^ 2 + y^ 2) which can be possible when X= 5 and Y=5  , min ( x^ 2 + y^ 2) = 5^2 + 5^2 = 50
answered by Active (1.8k points)  


Top Users Jul 2017
  1. Bikram

    5784 Points

  2. manu00x

    3602 Points

  3. Arjun

    1988 Points

  4. Debashish Deka

    1924 Points

  5. joshi_nitish

    1908 Points

  6. pawan kumarln

    1680 Points

  7. Tesla!

    1426 Points

  8. Hemant Parihar

    1334 Points

  9. Shubhanshu

    1180 Points

  10. Arnab Bhadra

    1124 Points


24,169 questions
31,187 answers
71,039 comments
29,512 users