Let $X = \{2, 3, 6, 12, 24\}$, Let $\leq$ be the partial order defined by $X \leq Y$ if $x$ divides $y$. Number of edges in the Hasse diagram of $(X, \leq)$ is
We don't represent transitive edges in Hasse diagram.
24
/
12
6
/ \
2 3
Now u can count number of edges will be 4.
4910 Points
2940 Points
1870 Points
1776 Points
1506 Points
1306 Points
1128 Points
1124 Points
1114 Points
956 Points
Gatecse