Let $X = \{2, 3, 6, 12, 24\}$, Let $\leq$ be the partial order defined by $X \leq Y$ if $x$ divides $y$. Number of edges in the Hasse diagram of $(X, \leq)$ is
We don't represent transitive edges in Hasse diagram.
24
/
12
6
/ \
2 3
Now u can count number of edges will be 4.
3308 Points
1884 Points
1656 Points
1640 Points
1396 Points
1272 Points
1162 Points
1048 Points
1010 Points
754 Points
742 Points
510 Points
490 Points
304 Points
248 Points
Gatecse