Let $X = \{2, 3, 6, 12, 24\}$, Let $\leq$ be the partial order defined by $X \leq Y$ if $x$ divides $y$. Number of edges in the Hasse diagram of $(X, \leq)$ is
We don't represent transitive edges in Hasse diagram.
24
/
12
6
/ \
2 3
Now u can count number of edges will be 4.
6334 Points
2202 Points
2150 Points
1980 Points
1726 Points
1718 Points
1706 Points
1650 Points
1518 Points
1512 Points
Gatecse