Let $X = \{2, 3, 6, 12, 24\}$, Let $\leq$ be the partial order defined by $X \leq Y$ if $x$ divides $y$. Number of edges in the Hasse diagram of $(X, \leq)$ is
We don't represent transitive edges in Hasse diagram.
24
/
12
6
/ \
2 3
Now u can count number of edges will be 4.
8608 Points
5398 Points
4718 Points
4522 Points
4468 Points
4222 Points
4122 Points
3742 Points
3576 Points
3394 Points
Gatecse