First time here? Checkout the FAQ!
+4 votes

Let $Ax = b$ be a system of linear equations where $A$ is an $m \times n$ matrix and $b$ is a $m \times 1$ column vector and $X$ is an $n \times1$ column vector of unknowns. Which of the following is false?

  1. The system has a solution if and only if, both $A$ and the augmented matrix $[Ab]$ have the same rank.

  2. If $m < n$ and $b$ is the zero vector, then the system has infinitely many solutions.

  3. If $m=n$ and $b$ is a non-zero vector, then the system has a unique solution.

  4. The system will have only a trivial solution when $m=n$, $b$ is the zero vector and $\text{rank}(A) =n$.


asked in Linear Algebra by Veteran (56.3k points)   | 253 views
All are true, right?

1 Answer

+5 votes
Best answer

Ans would be C because it is a case of linear non-homogeneous equations so by having m = n, we can't say that it will have unique solution. Solution depends on rank of matrix A and matrix [ A B ].

If rank[ A ] = rank[ A B ], then it will have solution otherwise no solution

answered by Active (2.1k points)  
selected by
If rank of A = rank of AB = n

then the solution would be unique
Top Users Jan 2017
  1. Debashish Deka

    8608 Points

  2. sudsho

    5398 Points

  3. Habibkhan

    4718 Points

  4. Bikram

    4522 Points

  5. Vijay Thakur

    4468 Points

  6. saurabh rai

    4222 Points

  7. Arjun

    4122 Points

  8. santhoshdevulapally

    3742 Points

  9. Sushant Gokhale

    3576 Points

  10. GateSet

    3394 Points

Monthly Topper: Rs. 500 gift card

19,177 questions
24,073 answers
20,310 users