First time here? Checkout the FAQ!
+4 votes

Let $Ax = b$ be a system of linear equations where $A$ is an $m \times n$ matrix and $b$ is a $m \times 1$ column vector and $X$ is an $n \times1$ column vector of unknowns. Which of the following is false?

  1. The system has a solution if and only if, both $A$ and the augmented matrix $[Ab]$ have the same rank.

  2. If $m < n$ and $b$ is the zero vector, then the system has infinitely many solutions.

  3. If $m=n$ and $b$ is a non-zero vector, then the system has a unique solution.

  4. The system will have only a trivial solution when $m=n$, $b$ is the zero vector and $\text{rank}(A) =n$.


asked in Linear Algebra by Veteran (58.4k points)   | 346 views
All are true, right?

1 Answer

+5 votes
Best answer

Ans would be C because it is a case of linear non-homogeneous equations so by having m = n, we can't say that it will have unique solution. Solution depends on rank of matrix A and matrix [ A B ].

If rank[ A ] = rank[ A B ], then it will have solution otherwise no solution

answered by Active (2.2k points)  
selected by
If rank of A = rank of AB = n

then the solution would be unique

Related questions

Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2580 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Prashant.

    1492 Points

  9. Arjun

    1472 Points

  10. Arunav Khare

    1464 Points

Monthly Topper: Rs. 500 gift card

22,086 questions
28,063 answers
24,169 users