GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
261 views

Consider the set $N^{*}$ of finite sequences of natural numbers with $x \leq_{p}y$ denoting that sequence $x$ is a prefix of sequence $y$. Then, which of the following is true?

  1. $N^{*}$ is uncountable.
  2. $\leq_{p}$ is a total order.
  3. Every non-empty subset of $N^{*}$ has a least upper bound.
  4. Every non-empty subset of $N^{*}$ has a greatest lower bound.
  5. Every non-empty finite subset of $N^{*}$ has a least upper bound.
asked in Set Theory & Algebra by Veteran (38.7k points)   | 261 views

1 Answer

+5 votes
Best answer
Consider any sequence like "43,9,8,2" - it can have many (infinite) least upper bounds like "43,9,8,2,5", "43,9,8,2,1" ... but can have only 1 greatest lower bound - "43,9,8" because we are using prefix relation. So, option D is true.
answered by Veteran (294k points)  
selected by
Consider two sequences : { (2,3,4)  (4,5,6) } .. What would be lower bound for this ??

Is this would be Empty sequence ()..
As N (Natural No. set is Infinite)

Now,  Number of finite Subsets of  N are Countable ?
Answer:

Related questions



Top Users Sep 2017
  1. Habibkhan

    6334 Points

  2. Warrior

    2202 Points

  3. Arjun

    2150 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1706 Points

  8. makhdoom ghaya

    1650 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,979 questions
33,554 answers
79,347 comments
31,011 users