First time here? Checkout the FAQ!
0 votes

Consider the ordering relation $x\mid y \subseteq N \times N$ over natural numbers $N$ such that $x \mid y$ if there exists $z \in N$ such that $x ∙ z = y$. A set is called lattice if every finite subset has a least upper bound and greatest lower bound. It is called a complete lattice if every subset has a least upper bound and greatest lower bound. Then,

  1. $\mid$ is an equivalence relation.
  2. Every subset of $N$ has an upper bound under $|$.
  3. $\mid$ is a total order.
  4. $(N, \mid)$ is a complete lattice.
  5. $(N, \mid)$ is a lattice but not a complete lattice.
asked in Set Theory & Algebra by Veteran (29.1k points)   | 198 views

2 Answers

+1 vote
Best answer
i think ans will be E)

as every subset  of this will not have LUB and GLB .
answered by Boss (9.4k points)  
selected by
Yes, it is a lattice , but how Complete ?

what is Least upper bound if  Subset is {x | x>=50}

I think for this Subset there is not LUB i.e. LUB exists for every finite subset but not any Infinite subset..
yeah you are right , i guess . for every subset LUB and GLB is not possible .
What does it mean by X.Z=Y?
Here prime numbers are not related to each it will be a lattice?

@Vaishali Jhalani

Though they are not related they have least upper bound. It's their least common multiple. And a poset is lattice if every pair has the least upper bound.

+1 vote

B and D both are the answers. (I think, Verification required.)

a.) | is an equivalance relation.  False

     3 | 6 but not the other way around. so not symmetric 

b.) Every subset of N has an upper bound under |.  True

     Every finite subset A does,  it is lcm(A) .
     Also even infinite subsets of $\mathbb{N}$ have least upper bound if we count 0 as natural number, (surprised !!) because everything divides zero.

Source: see examples.

c.) | is a total order. False

    3 and 5 are not comparable.

  Defination of total order: A poset  $(S, \preceq)$ is total order if $\forall{x,y \in S}$ either $x \preceq y$ or $y \preceq x$

d.) (N, |) is a complete lattice. True

    Option b explains the reason for upper bound. For finite subset we have gcd as lower bound, but for infinite subets we always have 1, if no other exists. :-)

e.) (N,∣) is a lattice but not a complete lattice. False.

    Now it's obvious, isnt' it. :-)

EDIT: I looked in an answer key. The answer as per the key is E. I guess they are not counting 0 as natural number. Which implies there is no upper bound for infinite subset, which makes both B and D false.

answered by Junior (621 points)  
edited by

Related questions

Top Users Mar 2017
  1. rude

    5156 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2732 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1386 Points

  9. Bikram

    1354 Points

  10. Sanjay Sharma

    1128 Points

Monthly Topper: Rs. 500 gift card

21,537 questions
26,871 answers
23,222 users