GATE CSE
First time here? Checkout the FAQ!
x
+3 votes
234 views
asked in Calculus by Boss (6.7k points)   | 234 views

2 Answers

+9 votes
Best answer

$e^\sqrt{2}$ will be the highest value of the given expression.

$\frac{e^{\sin x}}{e^{\cos x}}$ can be written as $e^{\sin x - \cos x}$.

$e$ is a famous irrational constant that is used as base of natural logarithms, and its approximate value is $2.7183$, (which is of course greater than $1$).

So now we just have to maximize $(\sin x - \cos x)$ to find the maximum value of given expression.


Clearly $\sin x$ and $\cos x$ are differentiable functions, hence their difference $(\sin x - \cos x)$ is also differentiable.

So we can differentiate $\sin x - \cos x$ to find its maximum value.

Solution of the equation $\frac{d}{dx}(\sin x - \cos x) = 0$ will give us the points where $\sin x - \cos x$ will attain its maximum value.

On differentiating $(\sin x - \cos x)$ with respect to $x$, we get $\cos x + \sin x$.

Putting $\cos x + \sin x = 0$ and simplifying we get 

$\tan x = -1$

This equation has infinitely many solutions.

One of them is $x = \frac{3\pi}{4}$$x = \frac{3\pi}{4} \text{radians or 135 degrees}$ .

$\sin \left(\frac{3\pi}{4} \right ) = \frac{1}{\sqrt2} \text{ and }\cos \left(\frac{3\pi}{4} \right ) = \frac{-1}{\sqrt2}$.

Putting these values in $e^{\sin x - \cos x}$, we get $e^{\sqrt2}$ or $e^{1.414}$.

 

answered by Veteran (12.4k points)  
selected by
0 votes

Say,Y=esinx / ecosx 

=>log Y =log(esinx / ecosx)

=>log Y =log esinx - log ecosx

              =sinx - cosx

           =1

 log Y =log e

      Y=e

answered by Veteran (49.7k points)  
sin x - cos x = 1?

what is the error if x=⊼/2

then sin⊼/2 -cos⊼/2=1 . isnot it?

yes, but that need not be maximum as cos x can go negative. $\frac {1}{\sqrt 2} - (-\frac{1}{\sqrt 2})$ gives the maximum value here.
Top Users Jan 2017
  1. Debashish Deka

    8968 Points

  2. sudsho

    5326 Points

  3. Habibkhan

    4798 Points

  4. Bikram

    4532 Points

  5. Vijay Thakur

    4486 Points

  6. saurabh rai

    4222 Points

  7. Arjun

    4196 Points

  8. santhoshdevulapally

    3808 Points

  9. Sushant Gokhale

    3596 Points

  10. Kapil

    3486 Points

Monthly Topper: Rs. 500 gift card

19,212 questions
24,104 answers
53,150 comments
20,319 users