GATE CSE
First time here? Checkout the FAQ!
x
0 votes
120 views

q1

asked in Calculus by Veteran (15.7k points)   | 120 views

2 Answers

+2 votes
Best answer

Absolute Minimum will be at $x = 3$ and $x = -3$.

Absolute minimum of $f\left ( x \right )$ is the minimum possible value that $f\left ( x \right )$ can ever attain.

Since a square root never spits out a $-ve$ value, the minimum value that $f\left ( x \right )$ can attain is $0$.

Now to make $f\left ( x \right ) = 0$, $\left ( 36 -4x^2 \right )$ must be equal to $0$.

On solving $\left ( 36 -4x^2 \right )= 0$, we get $x = 3$ & $x = -3$.

So at $x = 3$ & $x = -3$ the function $f\left ( x \right )$ will be at its absolute minimum.

that is, $f\left ( 3 \right ) = f\left ( -3 \right ) = 0$.

Also the domain of $f\left ( x \right )$ is $\left [ -3, 3 \right ]$ & the range is $\left [ 0, 6 \right ]$ 

answered by Veteran (12.7k points)  
selected by
@ Anurag : why √36 is not considered as  +6 & -6 both ?

Amsar, sorry I don't know why $\sqrt{36}$ is not considered as $+6$ & $-6$,
but $+\sqrt{36}$ is considered as $+6$ & $-\sqrt{36}$ is considered as $-6$.

ok.. :)
+1 vote

f(x)=√(36-4x2)

     =2√(9-x2)

    For getting absolute minimum f(x) should be 0

      So, 9-x2 =0

          x=3,-3

answered by Veteran (51.7k points)  
Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,989 answers
59,623 comments
22,046 users