GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
87 views

Let $f(x), x\in \left[0, 1\right]$, be any positive real valued continuous function. Then

         $\lim_{n \rightarrow \infty} (n + 1) \int_{0}^{1} x^{n} f(x) \text{d}x$

equals.

  1. $max_{x \in \left[0, 1\right]} f(x)$
  2. $min_{x \in \left[0, 1\right]} f(x)$
  3. $f(0)$
  4. $f(1)$
  5. $\infty$
asked in Calculus by Veteran (29k points)   | 87 views
Option D, we can take some sample f(x) and try..

Please log in or register to answer this question.

Related questions

Top Users Feb 2017
  1. Arjun

    5166 Points

  2. Bikram

    4204 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. sriv_shubham

    2298 Points

  6. Debashish Deka

    2234 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    1998 Points

  9. mcjoshi

    1626 Points

  10. sh!va

    1552 Points

Monthly Topper: Rs. 500 gift card

20,815 questions
25,974 answers
59,606 comments
22,025 users