GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
98 views

Let $f(x), x\in \left[0, 1\right]$, be any positive real valued continuous function. Then

         $\lim_{n \rightarrow \infty} (n + 1) \int_{0}^{1} x^{n} f(x) \text{d}x$

equals.

  1. $max_{x \in \left[0, 1\right]} f(x)$
  2. $min_{x \in \left[0, 1\right]} f(x)$
  3. $f(0)$
  4. $f(1)$
  5. $\infty$
asked in Calculus by Veteran (32.9k points)   | 98 views
Option D, we can take some sample f(x) and try..

Please log in or register to answer this question.

Related questions



Top Users Aug 2017
  1. Bikram

    4902 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2480 Points

  7. just_bhavana

    2388 Points

  8. stblue

    2138 Points

  9. Tesla!

    2060 Points

  10. joshi_nitish

    1758 Points


25,014 questions
32,140 answers
74,824 comments
30,185 users