GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
88 views

Let $f(x), x\in \left[0, 1\right]$, be any positive real valued continuous function. Then

         $\lim_{n \rightarrow \infty} (n + 1) \int_{0}^{1} x^{n} f(x) \text{d}x$

equals.

  1. $max_{x \in \left[0, 1\right]} f(x)$
  2. $min_{x \in \left[0, 1\right]} f(x)$
  3. $f(0)$
  4. $f(1)$
  5. $\infty$
asked in Calculus by Veteran (29.1k points)   | 88 views
Option D, we can take some sample f(x) and try..

Please log in or register to answer this question.

Related questions



Top Users Mar 2017
  1. rude

    4272 Points

  2. sh!va

    2994 Points

  3. Rahul Jain25

    2804 Points

  4. Kapil

    2608 Points

  5. Debashish Deka

    2244 Points

  6. 2018

    1414 Points

  7. Vignesh Sekar

    1338 Points

  8. Akriti sood

    1246 Points

  9. Bikram

    1246 Points

  10. Sanjay Sharma

    1016 Points

Monthly Topper: Rs. 500 gift card

21,452 questions
26,771 answers
60,972 comments
22,985 users