GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
109 views

Let $A$ and $B$ be non-empty disjoint sets of real numbers. Suppose that the average of the numbers in the first set is $\mu_{A}$ and the average of the numbers in the second set is $\mu_{B}$; let the corresponding variances be $v_{A}$ and $v_{B}$ respectively. If the average of the elements in $A \cup B$ is $\mu= p.\mu_{A} + (1 - p).\mu_{B}$, what is the variance of the elements in $A \cup B$?

  1. $p.v_{A}+ (1 - p).v_{B}$
  2. $(1 - p). v_{A}+ p. v_{B}$
  3. $p.[v_{A}+(\mu_{A}-\mu)^{2}]+(1 - p). [v_{B}+ (\mu_{B}-\mu)^{2}]$
  4. $(1 - p).[v_{A}+(\mu_{A}-\mu)^{2}]+ p. [v_{B}+ (\mu_{B}-\mu)^{2}]$
  5. $p.v_{A}+ (1 - p). v_{B} + (\mu_{A}- \mu_{B})^{2}$
asked in Probability by Veteran (29.1k points)   | 109 views

Please log in or register to answer this question.



Top Users Mar 2017
  1. rude

    5236 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2732 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1430 Points

  8. Bikram

    1424 Points

  9. Akriti sood

    1420 Points

  10. Sanjay Sharma

    1128 Points

Monthly Topper: Rs. 500 gift card

21,549 questions
26,889 answers
61,248 comments
23,251 users