GATE CSE
First time here? Checkout the FAQ!
x
0 votes
95 views

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ denote the function defined by $f(x)= (1-x^{2})^{\frac{3}{2}}$ if $|x| < 1$, and $f(x)=0$ if $|x| \geq 1$. Which of the following statements is correct ?

  1. $f$ is not continuous
  2. $f$ is continuous but not differentiable
  3. $f$ is differentiable but $f'$ is not continuous.
  4. $f$ is differentiable and $f'$ is continuous.
asked in Calculus by Veteran (32.9k points)   | 95 views

1 Answer

0 votes
F(x) is continuous at -1 and 1.
Ans 4
answered by anonymous   1 1 2
explain more why option 4 is correct and rest are not.


Top Users Aug 2017
  1. Bikram

    4892 Points

  2. ABKUNDAN

    4704 Points

  3. akash.dinkar12

    3480 Points

  4. rahul sharma 5

    3158 Points

  5. manu00x

    3012 Points

  6. makhdoom ghaya

    2470 Points

  7. just_bhavana

    2382 Points

  8. stblue

    2130 Points

  9. Tesla!

    2066 Points

  10. joshi_nitish

    1758 Points


25,009 questions
32,132 answers
74,803 comments
30,179 users