GATE CSE
First time here? Checkout the FAQ!
x
0 votes
49 views

Let $f$ and $g$ be two functions from $[0, 1]$ to $[0, 1]$ with $f$ strictly increasing. Which of the following statements is always correct?

  1. If $g$ is continuous, then $f ∘ g$ is continuous.
  2. If $f$ is continuous, then $f ∘ g$ is continuous.
  3. If $f$ and $f ∘ g$ are continuous, then $g$ is continuous.
  4. If $g$ and $f ∘ g$ are continuous, then $f$ is continuous.
asked in Set Theory & Algebra by Veteran (29.5k points)   | 49 views

Please log in or register to answer this question.



Top Users May 2017
  1. akash.dinkar12

    3308 Points

  2. pawan kumarln

    1884 Points

  3. Bikram

    1656 Points

  4. sh!va

    1640 Points

  5. Arjun

    1396 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1162 Points

  8. Angkit

    1048 Points

  9. LeenSharma

    1010 Points

  10. Arunav Khare

    754 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    742 Points

  2. pawan kumarln

    510 Points

  3. Arnab Bhadra

    490 Points

  4. bharti

    304 Points

  5. LeenSharma

    248 Points


22,832 questions
29,158 answers
65,233 comments
27,673 users