GATE CSE
First time here? Checkout the FAQ!
x
0 votes
113 views

Let $f(x)=\frac{e^{\frac{-1}{x}}}{x}$, where $x \in (0, 1)$. Then on $(0, 1)$.

  1. $f$ is uniformly continuous.
  2. $f$ is continuous but not uniformly continuous.
  3. $f$ is unbounded.
  4. $f$ is not continuous.
asked in Calculus by Veteran (29.2k points)   | 113 views

1 Answer

+1 vote

For interval (0 1), Uniform Distribution Function f(x) defined as 1/(1-0) = 1
i.e. f(x) = 1

So function is NOT Uniformly Distributed.

Lets Check Countinuity,
f(x)=e-1/x/x is everywhere continuous except 0. so it will be Continuous in (0 1).

Value of Function at x=0 is Undefined so it should be UnBounded in (0 1)

B should be correct Choice.

answered by Veteran (45.8k points)  

Related questions



Top Users Apr 2017
  1. akash.dinkar12

    3660 Points

  2. Divya Bharti

    2580 Points

  3. Deepthi_ts

    2040 Points

  4. rude

    1966 Points

  5. Tesla!

    1768 Points

  6. Debashish Deka

    1614 Points

  7. Shubham Sharma 2

    1610 Points

  8. Prashant.

    1492 Points

  9. Arunav Khare

    1464 Points

  10. Arjun

    1464 Points

Monthly Topper: Rs. 500 gift card

22,086 questions
28,062 answers
63,294 comments
24,160 users