GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
158 views
How do we find whether the group is finite or infinte in questions like below ?

If (G,*) is a group such that $(a * b)^{2} = (a*a) *(b*b)$ for all a,b belonging to G, then G is

a) Finite group

b) Infinite group

c) Abelian group

d) None of the above
asked in Set Theory & Algebra by Loyal (4.1k points)  
recategorized by | 158 views

2 Answers

+4 votes
Best answer

Here is the definition.

Let a be an element of the group G. If there exists a positive integer n such that an = e, then a is said to have Finite Order, and the smallest such positive integer is called the order of a, denoted by o(a)If there does not exist a positive integer n such that an = e, then a is said to have Infinite Order.

There is no way to prove that the given group (G,*) is a finite group or not. Because It does not talk about the sets. I have read this document. You can also read if you want to see that.

Now In the above question, The correct answer is C. The given group is an Abelien group. A group with Commutative property is called Abelian group. Because we will get (a * b)^2 = (a * a) * (b * b), only when the group is commutative. Like this:

(a * b)^2 = (a * b) * (a * b)
             = (a * b) * (b * a)    // Commutative property

             = a * ((b * b) * a)    // Associative property

             = a * (a * (b * b))    // Commutative property

             = (a * a) * (b * b)    // Associative Property 

Hence the given group is Abelian group. Hence Option C is the correct answer. 

answered by Veteran (25.4k points)  
selected by
@rude but here u havenot proved identity and inverse property

@Srestha it is given that (G,*) is a group, it means that it follows Closure, Associativity, Identity and inverse. I have to prove only Commutative property. Which I have shows that to achieve above expression you must have commutative property true else it will not be possible. yes

yes
@srestha  please mark it best answer then. thanks.
0 votes

A group with finite number of element is called as finite group and it represented by O(G).

let (G,*) be a group and a belong to G,Then order of an element 'a' is the smallest +ve integer n such that a^n=e is identitiy element;

 (a*b)*(a*b)=(a*a)*(b*b)

Applying right & left cancellation law

b*a=a*b

that's why above group is abelian group. 

answered by Loyal (4.4k points)  
Top Users Feb 2017
  1. Arjun

    5386 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3952 Points

  4. Aboveallplayer

    3086 Points

  5. Debashish Deka

    2564 Points

  6. sriv_shubham

    2318 Points

  7. Smriti012

    2236 Points

  8. Arnabi

    2008 Points

  9. mcjoshi

    1696 Points

  10. sh!va

    1684 Points

Monthly Topper: Rs. 500 gift card

20,863 questions
26,021 answers
59,689 comments
22,131 users