First time here? Checkout the FAQ!
+1 vote
How do we find whether the group is finite or infinte in questions like below ?

If (G,*) is a group such that $(a * b)^{2} = (a*a) *(b*b)$ for all a,b belonging to G, then G is

a) Finite group

b) Infinite group

c) Abelian group

d) None of the above
asked in Set Theory & Algebra by Loyal (4.1k points)  
recategorized by | 160 views

2 Answers

+4 votes
Best answer

Here is the definition.

Let a be an element of the group G. If there exists a positive integer n such that an = e, then a is said to have Finite Order, and the smallest such positive integer is called the order of a, denoted by o(a)If there does not exist a positive integer n such that an = e, then a is said to have Infinite Order.

There is no way to prove that the given group (G,*) is a finite group or not. Because It does not talk about the sets. I have read this document. You can also read if you want to see that.

Now In the above question, The correct answer is C. The given group is an Abelien group. A group with Commutative property is called Abelian group. Because we will get (a * b)^2 = (a * a) * (b * b), only when the group is commutative. Like this:

(a * b)^2 = (a * b) * (a * b)
             = (a * b) * (b * a)    // Commutative property

             = a * ((b * b) * a)    // Associative property

             = a * (a * (b * b))    // Commutative property

             = (a * a) * (b * b)    // Associative Property 

Hence the given group is Abelian group. Hence Option C is the correct answer. 

answered by Veteran (30.2k points)  
selected by
@rude but here u havenot proved identity and inverse property

@Srestha it is given that (G,*) is a group, it means that it follows Closure, Associativity, Identity and inverse. I have to prove only Commutative property. Which I have shows that to achieve above expression you must have commutative property true else it will not be possible. yes

@srestha  please mark it best answer then. thanks.
0 votes

A group with finite number of element is called as finite group and it represented by O(G).

let (G,*) be a group and a belong to G,Then order of an element 'a' is the smallest +ve integer n such that a^n=e is identitiy element;


Applying right & left cancellation law


that's why above group is abelian group. 

answered by Loyal (4.5k points)  

Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2734 Points

  5. Debashish Deka

    2592 Points

  6. 2018

    1544 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1342 Points

  9. Bikram

    1312 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,508 questions
26,832 answers
23,146 users