First time here? Checkout the FAQ!
+1 vote
How do we find whether the group is finite or infinte in questions like below ?

If (G,*) is a group such that $(a * b)^{2} = (a*a) *(b*b)$ for all a,b belonging to G, then G is

a) Finite group

b) Infinite group

c) Abelian group

d) None of the above
asked in Set Theory & Algebra by Loyal (4.1k points)  
recategorized by | 167 views

2 Answers

+5 votes
Best answer

Here is the definition.

Let a be an element of the group G. If there exists a positive integer n such that an = e, then a is said to have Finite Order, and the smallest such positive integer is called the order of a, denoted by o(a)If there does not exist a positive integer n such that an = e, then a is said to have Infinite Order.

There is no way to prove that the given group (G,*) is a finite group or not. Because It does not talk about the sets. I have read this document. You can also read if you want to see that.

Now In the above question, The correct answer is C. The given group is an Abelien group. A group with Commutative property is called Abelian group. Because we will get (a * b)^2 = (a * a) * (b * b), only when the group is commutative. Like this:

(a * b)^2 = (a * b) * (a * b)
             = (a * b) * (b * a)    // Commutative property

             = a * ((b * b) * a)    // Associative property

             = a * (a * (b * b))    // Commutative property

             = (a * a) * (b * b)    // Associative Property 

Hence the given group is Abelian group. Hence Option C is the correct answer. 

answered by Veteran (33.9k points)  
selected by
@rude but here u havenot proved identity and inverse property

@Srestha it is given that (G,*) is a group, it means that it follows Closure, Associativity, Identity and inverse. I have to prove only Commutative property. Which I have shows that to achieve above expression you must have commutative property true else it will not be possible. yes

@srestha  please mark it best answer then. thanks.
0 votes

A group with finite number of element is called as finite group and it represented by O(G).

let (G,*) be a group and a belong to G,Then order of an element 'a' is the smallest +ve integer n such that a^n=e is identitiy element;


Applying right & left cancellation law


that's why above group is abelian group. 

answered by Loyal (4.7k points)  

Top Users May 2017
  1. akash.dinkar12

    3308 Points

  2. pawan kumarln

    1884 Points

  3. Bikram

    1656 Points

  4. sh!va

    1640 Points

  5. Arjun

    1396 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1162 Points

  8. Angkit

    1048 Points

  9. LeenSharma

    1010 Points

  10. Arunav Khare

    754 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    742 Points

  2. pawan kumarln

    510 Points

  3. Arnab Bhadra

    490 Points

  4. bharti

    304 Points

  5. LeenSharma

    248 Points

22,832 questions
29,158 answers
27,673 users