GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
625 views

The minimum positive integer p such that 3p modulo 17 = 1 is

  1. 5
  2. 8
  3. 12
  4. 16
asked in Set Theory & Algebra by Veteran (19.4k points)  
retagged by | 625 views

3 Answers

+6 votes
Best answer
D) fermat's little theorem
answered by Boss (6.9k points)  
selected by

How (C)

I am getting (D)

What is the need to know any theorem !!

Can't we do directly by putting 'p' ??

 

offcourse you can!
+6 votes

Fermat's Little Theorem :

a≡ a (mod p)                        

According to Modular Arithmetic    ≡ b (mod n) if their difference (a-b) is an integer multiple of n ( n divides (a-b) )

So ( ap - a ) is an integer multiple of  p , now as a is not divisible by p so definitely  ( ap-1 -1) is an integer multiple of p .this simply means if we divides ap-1  by p , the remainder would be 1 .... ap-1 modulo p = 1 

put the values in the formula.          p=17 so p-1 =16 .

answered by (421 points)  
0 votes

Using Fermats Little Theorem

p: prime 
a : integer Not prime 
then
ap-1 mod p is always 1 

Here p : 7  Hence p-1  is 16

answered by Loyal (2.7k points)  

Ur definition of a is wrong

a is any integer which is not divisible by p.

 

And 1 more typo is there p=17 not 7

Plz correct it.

 

But it doesnt guarantee that it will be minimum,or does it?


Top Users Jul 2017
  1. Bikram

    4062 Points

  2. manu00x

    2464 Points

  3. Debashish Deka

    1850 Points

  4. joshi_nitish

    1658 Points

  5. Arjun

    1294 Points

  6. Hemant Parihar

    1184 Points

  7. Arnab Bhadra

    1112 Points

  8. Shubhanshu

    1054 Points

  9. Ahwan

    900 Points

  10. rahul sharma 5

    706 Points


24,022 questions
30,966 answers
70,346 comments
29,343 users