GATE CSE
First time here? Checkout the FAQ!
x
+5 votes
768 views

In a multi-user operating system on an average, 20 requests are made to use a particular resource per hour. The arrival of requests follows a Poisson distribution. The probability that either one, three or five requests are made in 45 minutes is given by :

  1. $6.9 \times 10^6 \times e^{-20}$
  2. $1.02 \times 10^6 \times e^{-20}$
  3. $6.9 \times 10^3 \times e^{-20}$
  4. $1.02 \times 10^3 \times e^{-20}$
asked in Probability by Veteran (19k points)   | 768 views

1 Answer

+8 votes
Best answer

20 request in 1 hour.. so we can expect 15 request in 45 minutes...

So, lemda = 15.. (expected value)

poission distribution formula: f(x, lemda) = p(X = x) = (lemda ^ x * e ^ - lemda)  / x!

Therefore p(one request) + p(3 request) + p(5 request)

= p(1; 15) + p(3; 15) + p(5; 15)

= 6.9 * 10^3 * e ^ -15..

= 6.9*103*e-15 = 6.9*103*e5*e-20 = 1.02*106*e-20..  Ans is (B)

answered by Loyal (4.7k points)  
selected by

6.9*103*e-15 = 6.9*103*e5*e-20 = 1.02*106*e-20

omg.. thanku very much Danish..
Answer is (B)

answer coming ( 6.9*103 ) *e^5= ( 6.9*103 )*148.41 =1.02*106

yes B

 

why not can we take λ = 20 and then compute P(1)+P(2)+P(3) , which will give the probability of getting 1 or 3 or 5 request per hour and then take 3/4th of it.

Answer b is right only if we take  λ = 15 and then compute P(1)+P(2)+P(3), which will be in requests per 45 mins.


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2728 Points

  5. Debashish Deka

    2602 Points

  6. 2018

    1574 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1378 Points

  9. Bikram

    1342 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,517 questions
26,844 answers
61,157 comments
23,181 users