GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
503 views

When a coin is tossed, the probability of getting a Head is $p, 0 < p < 1$. Let $N$ be the random variable denoting the number of tosses till the first Head appears, including the toss where the Head appears. Assuming that successive tosses are independent, the expected value of $N$ is

  1. $1/p$
  2. $1/(1 - p)$
  3. $1/p^2$
  4. $1/(1 - p^2)$
asked in Probability by Veteran (19k points)   | 503 views

1 Answer

+11 votes
Best answer
$E = 1 \times p  + 2 \times (1 - p)p  + 3 \times (1 - p)(1 - p)p  + \dots$

multiply both side with $(1 - p)$ and subtract:

$E - (1 - p)E = 1 \times p  + (1 - p)p + (1 - p)(1 - p)p + \dots$

$  = p /(1 - (1 -p)) = 1$  (because it is now forming a GP)

$=>(1 - 1 + p)E = 1$

$=> E = 1 / p$

 

So, Option (A)...
answered by Loyal (4.7k points)  
selected by
what this anwer means? atleast add some description about which step is taken why? what it implies..? anything? ?
It is an arithmetic geometric progression .That he is solving ...you can see how to solve it
Top Users Feb 2017
  1. Arjun

    5224 Points

  2. Bikram

    4230 Points

  3. Habibkhan

    3748 Points

  4. Aboveallplayer

    2986 Points

  5. Debashish Deka

    2356 Points

  6. sriv_shubham

    2298 Points

  7. Smriti012

    2142 Points

  8. Arnabi

    2008 Points

  9. sh!va

    1654 Points

  10. mcjoshi

    1628 Points

Monthly Topper: Rs. 500 gift card

20,832 questions
25,989 answers
59,623 comments
22,046 users