GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
121 views

suppose X and Y are random variables such that

E(X)=1 (Y)=2 V(X)=1 V(Y)=2 Cov(X,Y)=1

by using above values following expression are evaluated

E(X+2Y)=p

EXY)=q

Vat(X-2Y+1)=r

find pq+r

 

 

 

asked in Probability by Veteran (30.7k points)  
recategorized by | 121 views

1 Answer

0 votes
IF X,Y are independent than  Cov(X,Y) $=$ 0  . Here its $\neq$ 0 . So we they are dependent .

E(X+2Y) = E(X) + 2E(Y) = 5 = p

Cov(X,Y) = E(XY) - E(X)E(Y)  on solving E(XY) = 3 =q .

Var(X - 2Y + 1) = Var(X) + 4Var(Y) + Var(1) + 2Cov(X,-2Y) + 2Cov(X,1) + 2C(Y,1)    [Var[constant]= 0 ]

Cov(X,Y) = 0 if X , Y are independent . So Cov (X,1) = 0 , Cov(Y) =0 .

                         = Var(X) + 4Var(Y) -4Cov(X,Y)       [ Cov(X,-Y) = -Cov(X,Y) ]

On putting the values we get  r=5

Therefore  pq+r = 20
answered by Boss (7k points)  


Top Users Mar 2017
  1. rude

    4768 Points

  2. sh!va

    3054 Points

  3. Rahul Jain25

    2920 Points

  4. Kapil

    2734 Points

  5. Debashish Deka

    2592 Points

  6. 2018

    1544 Points

  7. Vignesh Sekar

    1422 Points

  8. Akriti sood

    1342 Points

  9. Bikram

    1312 Points

  10. Sanjay Sharma

    1126 Points

Monthly Topper: Rs. 500 gift card

21,508 questions
26,832 answers
61,091 comments
23,146 users