GATE CSE
First time here? Checkout the FAQ!
x
+1 vote
150 views

suppose X and Y are random variables such that

E(X)=1 (Y)=2 V(X)=1 V(Y)=2 Cov(X,Y)=1

by using above values following expression are evaluated

E(X+2Y)=p

EXY)=q

Vat(X-2Y+1)=r

find pq+r

 

 

 

asked in Probability by Veteran (31.4k points)  
recategorized by | 150 views

1 Answer

0 votes
IF X,Y are independent than  Cov(X,Y) $=$ 0  . Here its $\neq$ 0 . So we they are dependent .

E(X+2Y) = E(X) + 2E(Y) = 5 = p

Cov(X,Y) = E(XY) - E(X)E(Y)  on solving E(XY) = 3 =q .

Var(X - 2Y + 1) = Var(X) + 4Var(Y) + Var(1) + 2Cov(X,-2Y) + 2Cov(X,1) + 2C(Y,1)    [Var[constant]= 0 ]

Cov(X,Y) = 0 if X , Y are independent . So Cov (X,1) = 0 , Cov(Y) =0 .

                         = Var(X) + 4Var(Y) -4Cov(X,Y)       [ Cov(X,-Y) = -Cov(X,Y) ]

On putting the values we get  r=5

Therefore  pq+r = 20
answered by Boss (7k points)  


Top Users Jul 2017
  1. Bikram

    4894 Points

  2. manu00x

    2888 Points

  3. Debashish Deka

    1870 Points

  4. joshi_nitish

    1776 Points

  5. Arjun

    1496 Points

  6. Hemant Parihar

    1306 Points

  7. Shubhanshu

    1128 Points

  8. Arnab Bhadra

    1114 Points

  9. pawan kumarln

    1114 Points

  10. Ahwan

    940 Points


24,089 questions
31,062 answers
70,677 comments
29,400 users