First time here? Checkout the FAQ!
+8 votes

Let X and Y be two exponentially distributed and independent random variables with mean α and β, respectively. If Z = min (X, Y), then the mean of Z is given by

  1. (1/(α + β))
  2. min (α, β)
  3. (αβ/(α + β))
  4. α + β
asked in Probability by Veteran (19.2k points)   | 919 views
Answer this please

1 Answer

+7 votes
Best answer

$X$ is an exponential random variable of parameter λ when its probability distribution function is

$$f(x) = \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0  \end{cases}$$

For a > 0, we have the cumulative distribution function

$$F_x(a) = \int_0^a f(x) dx = \int_0^a  \lambda e^{-\lambda x} dx = -e^{-\lambda x} \mid_0^a = 1 - e^ {-\lambda a}$$


$$P\left\{X < a \right \} = 1 - e^ {-\lambda a} $$ and 

$$P\left\{X > a \right \} = e^ {-\lambda a} $$

Now, we use $P \left \{X > a \right \}$ for our problem because our concerned variable $Z$ is min of $X$ and $Y$. 

For exponential distribution with parameter $\lambda$, mean is given by $\frac{1}{\lambda}$.
We have,

$P \left \{X > a \right \} = e^ {-\frac{1}{\alpha} a} $

$P \left \{Y > a \right \} = e^ {-\frac{1}{\beta} a} $

So, $\begin{align*}P\left \{Z > a \right \} &= P \left \{X > a \right \}  P \left \{Y > a \right \} \left(\because \text{X and Y are independent events and } \\Z > \min \left(X, Y \right) \right)\\&=e^ {-\frac{1}{\alpha} a}  e^ {-\frac{1}{\beta} a} \\&=e^{-\left(\frac{1}{\alpha} + \frac{1}{\beta} \right)a} \\&=e^{-\left(\frac{\alpha + \beta} {\alpha \beta} \right)a}\end{align*}$

This shows that $Z$ is also exponentially distributed with parameter $\frac{\alpha + \beta} {\alpha \beta}$ and mean $\frac{\alpha  \beta} {\alpha + \beta}$.



answered by Veteran (285k points)  
selected by

Mean in exponential disribution is 1/λ.

According to your logic, the answer should be 1/α + 1/β, which leads to option C.

Yes. It is C. I had taken mean for parameter. Changed now :)
@csegate2 >> Reciprocal will be the mean.
link is broken

Now, we use P{X>a} for our problem because our concerned variable Z is min of X and Y.

Please elaborate this.

because in f(x) we solve for x>=0
I didnt get this line





please someone explain..

Now, we use P{X>a} for our problem because our concerned variable Z is min of X and Y.

What is the meaning and conclusion of this line.
Sir, what is the role of min(x, y) here ?

If it would have been max instead of min, then what would be the answer?

Top Users May 2017
  1. akash.dinkar12

    3578 Points

  2. pawan kumarln

    2314 Points

  3. Bikram

    1950 Points

  4. Arjun

    1852 Points

  5. sh!va

    1682 Points

  6. Debashish Deka

    1296 Points

  7. Devshree Dubey

    1282 Points

  8. Arunav Khare

    1122 Points

  9. Angkit

    1072 Points

  10. LeenSharma

    1028 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 29 - Jun 04
  1. Arunav Khare

    246 Points

  2. Arjun

    202 Points

  3. pawan kumarln

    108 Points

  4. Rupendra Choudhary

    94 Points

  5. Niharika 1

    90 Points

22,909 questions
29,243 answers
27,746 users