GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
199 views

The linear operation $L(x)$ is defined by the cross product $L(x)= b \times x$, where $b=\left[0 1 0\right]^{T}$ and $x=\left[x_{1} x_{2} x_{3}\right]^{T}$ are three dimensional vectors. The $3 \times 3$ matrix $M$ of this operation satisfies

$L(x)=M\begin{bmatrix}
x_{1}& \\
x_{2}&  \\
x_{3}& \\
\end{bmatrix}$

Then the eigenvalues of $M$ are

  1. $0, +1, -1$
  2. $1, -1, 1$
  3. $i, -i, 1$
  4. $i, -i, 0$

 

asked in Linear Algebra by Boss (8k points)  
edited by | 199 views

1 Answer

0 votes

L(x) = b x X = [x3 0 -x1]T (Using definition of Cross Prod. from wikipedia ;) See comment below for details )

L(x) = M(3x3) x [x1 x2 x3]T

Now, what should M do with X? :D :D

Exchange the top and bottom rows, place sign, nullify middle row.

That  can be achieved with M:

[0 0 1
0 0 0
-1 0 0]

Its Eigenvalues turn out to be: 0, +i. -i (A)

answered by Junior (963 points)  
edited by
How did you get b*X=[ x3  0  x2 ] ???

Thanks for pointing it out! It was a typo :D

It should have been [x3 0 -x1]T
Edited. :)

i could not understand how u got it actually i could not get how u multiplied this ???

As far as I understand,

b,X are 3-d vectors, i.e having 3 components. Following representation is of scalar part.

b=[0 1 0]T
X=[x1 x2 x3]T

 b x X =

|i j k|

|0 1 0|

|x1  x2 x3|

(I'm not good with latex or any kind of formatting this site uses :( that's just determinant form of Cross Prod.)

You get: x3 along i, 0 along j, x1 along k

i,j,and k are just three unit vectors, representing the dimensions.

So, your resultant vector (scalar part) is : [x3 0 -x1]T

Its like a point in 3-d space (like we did in physics).

Does it help?

 

yes its very helpful thank u
how 0, +i, -i? isn't it 0, +1, -1?
Solving, [0 0 1] [0 0 0] [-1 0 0] Don't we get, x(x^2+1)=0? ;)
Top Users Jan 2017
  1. Debashish Deka

    8322 Points

  2. sudsho

    5166 Points

  3. Habibkhan

    4718 Points

  4. Vijay Thakur

    4468 Points

  5. Bikram

    4420 Points

  6. saurabh rai

    4212 Points

  7. Arjun

    4082 Points

  8. santhoshdevulapally

    3732 Points

  9. Sushant Gokhale

    3518 Points

  10. GateSet

    3336 Points

Monthly Topper: Rs. 500 gift card

19,159 questions
24,065 answers
52,873 comments
20,288 users