GATE CSE
First time here? Checkout the FAQ!
x
+2 votes
230 views

The linear operation $L(x)$ is defined by the cross product $L(x)= b \times x$, where $b=\left[0 1 0\right]^{T}$ and $x=\left[x_{1} x_{2} x_{3}\right]^{T}$ are three dimensional vectors. The $3 \times 3$ matrix $M$ of this operation satisfies

$L(x)=M\begin{bmatrix}
x_{1}& \\
x_{2}&  \\
x_{3}& \\
\end{bmatrix}$

Then the eigenvalues of $M$ are

  1. $0, +1, -1$
  2. $1, -1, 1$
  3. $i, -i, 1$
  4. $i, -i, 0$

 

asked in Linear Algebra by Boss (8.4k points)  
edited by | 230 views

1 Answer

0 votes

L(x) = b x X = [x3 0 -x1]T (Using definition of Cross Prod. from wikipedia ;) See comment below for details )

L(x) = M(3x3) x [x1 x2 x3]T

Now, what should M do with X? :D :D

Exchange the top and bottom rows, place sign, nullify middle row.

That  can be achieved with M:

[0 0 1
0 0 0
-1 0 0]

Its Eigenvalues turn out to be: 0, +i. -i (A)

answered by Junior (959 points)  
edited by
How did you get b*X=[ x3  0  x2 ] ???

Thanks for pointing it out! It was a typo :D

It should have been [x3 0 -x1]T
Edited. :)

i could not understand how u got it actually i could not get how u multiplied this ???

As far as I understand,

b,X are 3-d vectors, i.e having 3 components. Following representation is of scalar part.

b=[0 1 0]T
X=[x1 x2 x3]T

 b x X =

|i j k|

|0 1 0|

|x1  x2 x3|

(I'm not good with latex or any kind of formatting this site uses :( that's just determinant form of Cross Prod.)

You get: x3 along i, 0 along j, x1 along k

i,j,and k are just three unit vectors, representing the dimensions.

So, your resultant vector (scalar part) is : [x3 0 -x1]T

Its like a point in 3-d space (like we did in physics).

Does it help?

 

yes its very helpful thank u
how 0, +i, -i? isn't it 0, +1, -1?
Solving, [0 0 1] [0 0 0] [-1 0 0] Don't we get, x(x^2+1)=0? ;)


Top Users May 2017
  1. akash.dinkar12

    3578 Points

  2. pawan kumarln

    2314 Points

  3. Bikram

    1950 Points

  4. Arjun

    1852 Points

  5. sh!va

    1682 Points

  6. Debashish Deka

    1296 Points

  7. Devshree Dubey

    1282 Points

  8. Arunav Khare

    1122 Points

  9. Angkit

    1072 Points

  10. LeenSharma

    1028 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 29 - Jun 04
  1. Arunav Khare

    246 Points

  2. Arjun

    202 Points

  3. pawan kumarln

    108 Points

  4. Rupendra Choudhary

    94 Points

  5. Niharika 1

    90 Points


22,909 questions
29,243 answers
65,404 comments
27,746 users