GATE CSE
First time here? Checkout the FAQ!
x
+8 votes
473 views

Let n = p2q, where p and q are distinct prime numbers. How many numbers m satisfy 1 ≤ m ≤ n and gcd (m, n) = 1? Note that gcd (m, n) is the greatest common divisor of m and n.

  1. p(q - 1)
  2. pq
  3. (p2- 1) (q - 1)
  4. p(p - 1) (q - 1)
asked in Set Theory & Algebra by Veteran (19.2k points)   | 473 views

4 Answers

+10 votes
Best answer

n = p2q, where p and q are prime. 

So, number of multiple of p in n = pq 

Number of multiples of q in n = p2

Number of multiples of pq in n = p

Since prime factorisation of n consists of only p and q, gcd(m, n) will be a multiple of these or 1. So, number of possible m such that gcd(m, n) is 1 will be n - number of multiples of either p or q.

= n - p2-pq+p

= p2q-p2-pq+p

= p(pq-p-q+1)

=p(p-1)(q-1)

answered by Veteran (285k points)  
selected by
Sir means the numbers we get after subtracting from "n" are the ones which do not contain p or q or pq in them,, and so their gcd with n will result to 1?
After subtraction we get numbers which are not multiple of p or q.
@arjun sir

can you please explain it a bit more, actually not getting it.
Since prime factorisation of n consists of only p and q, gcd(m, n) will be a multiple of these or 1. So, number of possible m such that gcd(m, n) is 1 will be n - number of multiples of either p or q
Got it. Thanx
Maybe you want to tell that you have used Inclusion - Exclusion Theorom
+5 votes

using Eulers function we can find out the no of relatively prime factors.

If we find out gcd of n with any of these prime factor,it will be always 1.

Eulers function is ∅(pn) is pn-1(p-1) 

given that n=p2q(p,q prime)

∅(p2q)=∅(p2)*∅(q)

          =p(p-1)(q-1)

so D is the answer

answered by Boss (6k points)  

Please provide derivation of ∅(p2). 

+5 votes

Euler's totient function $\phi (n)$ is being asked here :

Euler's totient function $\phi (n)$ = Number of positive integers which are $\leq n$ and relatively prime or co-prime to n . (ie. co-prime means if  $\gcd (a,b)=1$ )

It is given by $\phi (n)= n\times( \frac{(P_1-1)(P_2-1)...(P_k-1)}{P_1 P_2..P_k} )$

$\text{where } P_1 P_2..P_k \ \ \text{distinct prime divisors of }n$

We have $n=p^{2}q$.

Therefore,
$\begin{align*} \phi(n)&= n(\frac{(p-1)(q-1)}{p q}) \\ &= p^{2}q(\frac{(p-1)(q-1)}{p q}) \\ &= p (p-1)(q-1) \end{align*}$


 

answered by Veteran (20.3k points)  
–3 votes
1 is the answer
answered by (465 points)  
reshown by
how?


Top Users May 2017
  1. akash.dinkar12

    3166 Points

  2. pawan kumarln

    1648 Points

  3. sh!va

    1600 Points

  4. Arjun

    1380 Points

  5. Bikram

    1372 Points

  6. Devshree Dubey

    1272 Points

  7. Debashish Deka

    1132 Points

  8. Angkit

    1044 Points

  9. LeenSharma

    900 Points

  10. srestha

    714 Points

Monthly Topper: Rs. 500 gift card
Top Users 2017 May 22 - 28
  1. Bikram

    458 Points

  2. pawan kumarln

    274 Points

  3. Ahwan

    236 Points

  4. Arnab Bhadra

    234 Points

  5. bharti

    190 Points


22,778 questions
29,106 answers
65,165 comments
27,647 users