First time here? Checkout the FAQ!
+2 votes

Which of the following is the right Procedure to get the minimum for f(x)?

Procedure 1: This is a closed interval, so we will have to calculate the value including and between [0,π/2].

To get critical points we do f'(x)=0. But here on f'(x) we get: -e-x-sin(x)=0, ie, there are no critical point and derivative exists everywhere? So we will calculate the points where derivatives will be 0. Exponential will never be zero, so consider sin, it will be zero only at point nπ/2.(here n=1)

Hence answer is π/2.

Procedure 2: If f'(x)<0, then it is minimum at that point. Here we are getting f'(x)<0 for [0,π/2] and inbetween points. So are we supposed to substitute each value in f(x) from options to check which gives the minimum?

Which Procedure is right?

asked in Calculus by Loyal (3.3k points)  
edited by | 118 views

1 Answer

0 votes
To find maxima or minima we need to equation differential to zero but  the differential is never satisfied by any value in [0,pi/2] so we only need to check if slope is positive or negative to find the maxima , it is  always negative in [0,pi/2] so the value at pi/2 is the minimum.
answered by Junior (943 points)  
the value at 0 is one right?
@Tehreem at x = 0
f(x) = 2
Top Users Jan 2017
  1. Debashish Deka

    8608 Points

  2. sudsho

    5398 Points

  3. Habibkhan

    4718 Points

  4. Bikram

    4522 Points

  5. Vijay Thakur

    4468 Points

  6. saurabh rai

    4222 Points

  7. Arjun

    4122 Points

  8. santhoshdevulapally

    3742 Points

  9. Sushant Gokhale

    3576 Points

  10. GateSet

    3394 Points

Monthly Topper: Rs. 500 gift card

19,177 questions
24,073 answers
20,310 users