GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
1.3k views
Suppose that the eigenvalues of matrix $A$ are $1, 2, 4$. The determinant of $\left(A^{-1}\right)^{T}$ is _________.
asked in Linear Algebra by Veteran (43.7k points)  
edited by | 1.3k views

2 Answers

+15 votes
Best answer

Determinant of Matrix A = product of eigen values = $1 \times 2 \times 4 =8$

Determinant of Inverse Matrix of A, $\text{det}(A^{-1}) = \frac{1}{\text{det}(A)} =\frac{1}{8}$

Determinant remains same after the Transpose

so, Determinant of $(A^{-1})^T$ = $\text{det}(A^{-1}) = \frac{1}{8}$ = 0.125

answered by Veteran (53.5k points)  
selected by
+5 votes
0.125

Eigen value of A inverse is 1,1/2,1/4. Product of those eigen values gives determinant value.

Transposing a matrix doesn't change is eigen value.
answered by Junior (717 points)  


Top Users Sep 2017
  1. Habibkhan

    6338 Points

  2. Warrior

    2220 Points

  3. Arjun

    2150 Points

  4. nikunj

    1980 Points

  5. manu00x

    1726 Points

  6. SiddharthMahapatra

    1718 Points

  7. Bikram

    1716 Points

  8. makhdoom ghaya

    1660 Points

  9. A_i_$_h

    1518 Points

  10. rishu_darkshadow

    1512 Points


25,981 questions
33,556 answers
79,367 comments
31,013 users