GATE CSE
First time here? Checkout the FAQ!
x
+11 votes
1.6k views
Two eigenvalues of a $3 \times 3$ real matrix $P$ are $(2+\sqrt {-1})$ and $3$. The determinant of $P$ is _______
asked in Linear Algebra by Boss (9.1k points)   | 1.6k views

3 Answers

+29 votes
Best answer
Given two eigen values are (2+i) and 3.. since it is a real matrix the 3rd eigen value is 2-i
determinant of P = product of eigen values.
Solving we get,

Answer 15.
answered by Boss (8.8k points)  
edited by
no1 is telling if the answers are correct or not.atlst upvotes.. :(
sure u r right .. but the 3rd eigen value is 2 - i because is is 3x3 matrix nt because it is real matrix .
and the complex root are in pair + and -
+10 votes
Eigen values are roots of Characterstic equation $|A - \lambda I | = 0$

For a $3×3$ matrix, characterstic equation will be cubic, so will have $3$ roots. Two roots are given as: $ 2 + i$ and $3$ and We know that complex roots always occur in pairs so, if $2+i$ is a root of characterstic equation, then $2-i$ must be other root.

$\lambda_{1} = 2+i$, $\lambda_{2} = 2-i$ and $\lambda_{3} = 3$

$\color{blue}{\det(A) = \lambda_{1}\lambda_{2}\lambda_{3} = (2+i)*(2-i)*3 = (2^2 - i^2)*3 = 5*3 = 15}$
answered by Veteran (25.3k points)  
edited by
we "can have". Not "will have" :)
Why Can ?
So, it's not compulsory?
I think will is correct, because there will always be 3 roots / eigen values. which may be repeated.
+1 vote

The determinant of a real matrix can never be imaginary. So, if one eigen value is complex, the other eigen value has to be its conjugate.   So, the eigen values of the matrix will be 2+i, 2-i and 3.   Also, determinant is the product of all eigen values. So, the required answer is (2+i)*(2-i)*(3) = (4-i2)*(3) = (5)*(3) = 15.

answered by Loyal (4k points)  


Top Users Sep 2017
  1. Habibkhan

    8312 Points

  2. Warrior

    2862 Points

  3. rishu_darkshadow

    2796 Points

  4. Arjun

    2766 Points

  5. A_i_$_h

    2526 Points

  6. manu00x

    2094 Points

  7. nikunj

    1980 Points

  8. Bikram

    1874 Points

  9. makhdoom ghaya

    1810 Points

  10. SiddharthMahapatra

    1718 Points


26,283 questions
33,842 answers
80,383 comments
31,193 users